Previous |  Up |  Next

Article

Title: Generalized spectral perturbation and the boundary spectrum (English)
Author: Mouton, Sonja
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 2
Year: 2021
Pages: 603-621
Summary lang: English
.
Category: math
.
Summary: By considering arbitrary mappings $\omega $ from a Banach algebra $A$ into the set of all nonempty, compact subsets of the complex plane such that for all $a \in A$, the set $\omega (a)$ lies between the boundary and connected hull of the exponential spectrum of $a$, we create a general framework in which to generalize a number of results involving spectra such as the exponential and singular spectra. In particular, we discover a number of new properties of the boundary spectrum. (English)
Keyword: exponential spectrum
Keyword: singular spectrum
Keyword: boundary spectrum
Keyword: boundary and hull
Keyword: (strong) Riesz property
Keyword: Mobius spectrum
MSC: 46H10
MSC: 47A10
idZBL: 07361088
idMR: MR4263189
DOI: 10.21136/CMJ.2021.0046-20
.
Date available: 2021-05-20T13:49:13Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148924
.
Reference: [1] Aupetit, B.: Propriétés spectrales des algèbres de Banach.Lecture Notes in Mathematics 735. Springer, Berlin (1979), French. Zbl 0409.46054, MR 0549769, 10.1007/BFb0064204
Reference: [2] Aupetit, B.: A Primer on Spectral Theory.Universitext. Springer, New York (1991). Zbl 0715.46023, MR 1083349, 10.1007/978-1-4612-3048-9
Reference: [3] Burlando, L.: Comparisons between different spectra of an element in a Banach algebra.Int. J. Math. Sci. 16 (1993), 819-822. Zbl 0808.46065, MR 1234831, 10.1155/S0161171293001036
Reference: [4] Conway, J. B.: A Course in Functional Analysis.Graduate Texts in Mathematics 96. Springer, New York (2010). Zbl 0706.46003, MR 1070713, 10.1007/978-1-4757-4383-8
Reference: [5] Groenewald, L., Harte, R. E., Raubenheimer, H.: Perturbation by inessential and Riesz elements.Quaest. Math. 12 (1989), 439-446. Zbl 0705.46022, MR 1021942, 10.1080/16073606.1989.9632195
Reference: [6] Groenewald, L., Raubenheimer, H.: A note on the singular and exponential spectrum in Banach algebras.Quaest. Math. 11 (1988), 399-408. Zbl 0673.46022, MR 0969558, 10.1080/16073606.1988.9632154
Reference: [7] Harte, R. E.: The exponential spectrum in Banach algebras.Proc. Am. Math. Soc. 58 (1976), 114-118. Zbl 0338.46043, MR 0407603, 10.1090/S0002-9939-1976-0407603-5
Reference: [8] Harte, R. E.: Invertibility and Singularity for Bounded Linear Operators.Pure and Applied Mathematics 109. Marcel Dekker, New York (1988). Zbl 0636.47001, MR 0920812
Reference: [9] Harte, R. E., Wickstead, A. W.: Boundaries, hulls and spectral mapping theorems.Proc. R. Ir. Acad., Sect. A 81 (1981), 201-208. Zbl 0489.46041, MR 0654819
Reference: [10] Lindeboom, L., Raubenheimer, H.: A note on the singular spectrum.Extr. Math. 13 (1998), 349-357. Zbl 1054.46510, MR 1695568
Reference: [11] Lindeboom, L., Raubenheimer, H.: Different exponential spectra in Banach algebras.Rocky Mt. J. Math. 29 (1999), 957-970. Zbl 0969.46038, MR 1733077, 10.1216/rmjm/1181071617
Reference: [12] Lindeboom, L., Raubenheimer, H.: On regularities and Fredholm theory.Czech. Math. J. 52 (2002), 565-574. Zbl 1010.46045, MR 1923262, 10.1023/A:1021727829750
Reference: [13] Mouton, H. du T.: On inessential ideals in Banach algebras.Quaest. Math. 17 (1994), 59-66. Zbl 0818.46053, MR 1276008, 10.1080/16073606.1994.9632217
Reference: [14] Mouton, H. du T., Mouton, S., Raubenheimer, H.: Ruston elements and Fredholm theory relative to arbitrary homomorphisms.Quaest. Math. 34 (2011), 341-359. Zbl 1274.46095, MR 2844530, 10.2989/16073606.2011.622893
Reference: [15] Mouton, H. du T., Raubenheimer, H.: Fredholm theory relative to two Banach algebra homomorphisms.Quaest. Math. 14 (1991), 371-382. Zbl 0763.46035, MR 1143042, 10.1080/16073606.1991.9631656
Reference: [16] Mouton, S.: On the boundary spectrum in Banach algebras.Bull. Aust. Math. Soc. 74 (2006), 239-246. Zbl 1113.46044, MR 2260492, 10.1017/S0004972700035681
Reference: [17] Mouton, S.: Mapping and continuity properties of the boundary spectrum in Banach algebras.Ill. J. Math. 53 (2009), 757-767. Zbl 1210.46033, MR 2727353, 10.1215/ijm/1286212914
Reference: [18] Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras.Operator Theory: Advances and Applications 139. Birkhäuser, Basel (2007). Zbl 1208.47001, MR 2355630, 10.1007/978-3-0348-7788-6
Reference: [19] Raubenheimer, H., Swartz, A.: Radius preserving (semi)regularities in Banach algebras.Quaest. Math. 42 (2019), 811-822. Zbl 1439.46039, MR 3989360, 10.2989/16073606.2018.1501439
Reference: [20] Raubenheimer, H., Swartz, A.: Regularity-type properties of the boundary spectrum in Banach algebras.Rocky Mt. J. Math. 49 (2019), 2747-2754. Zbl 07163196, MR 4058347, 10.1216/RMJ-2019-49-8-2747
Reference: [21] Taylor, A. E., Lay, D. C.: Introduction to Functional Analysis.John Wiley & Sons, New York (1980). Zbl 0501.46003, MR 0564653
Reference: [22] Živkovič-Zlatanovič, S. Č., Harte, R. E.: Polynomially Riesz elements.Quaest. Math. 38 (2015), 573-586. Zbl 06696038, MR 3403668, 10.2989/16073606.2015.1026558
.

Files

Files Size Format View
CzechMathJ_71-2021-2_19.pdf 279.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo