Title:
|
Generalized spectral perturbation and the boundary spectrum (English) |
Author:
|
Mouton, Sonja |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
2 |
Year:
|
2021 |
Pages:
|
603-621 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
By considering arbitrary mappings $\omega $ from a Banach algebra $A$ into the set of all nonempty, compact subsets of the complex plane such that for all $a \in A$, the set $\omega (a)$ lies between the boundary and connected hull of the exponential spectrum of $a$, we create a general framework in which to generalize a number of results involving spectra such as the exponential and singular spectra. In particular, we discover a number of new properties of the boundary spectrum. (English) |
Keyword:
|
exponential spectrum |
Keyword:
|
singular spectrum |
Keyword:
|
boundary spectrum |
Keyword:
|
boundary and hull |
Keyword:
|
(strong) Riesz property |
Keyword:
|
Mobius spectrum |
MSC:
|
46H10 |
MSC:
|
47A10 |
idZBL:
|
07361088 |
idMR:
|
MR4263189 |
DOI:
|
10.21136/CMJ.2021.0046-20 |
. |
Date available:
|
2021-05-20T13:49:13Z |
Last updated:
|
2023-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148924 |
. |
Reference:
|
[1] Aupetit, B.: Propriétés spectrales des algèbres de Banach.Lecture Notes in Mathematics 735. Springer, Berlin (1979), French. Zbl 0409.46054, MR 0549769, 10.1007/BFb0064204 |
Reference:
|
[2] Aupetit, B.: A Primer on Spectral Theory.Universitext. Springer, New York (1991). Zbl 0715.46023, MR 1083349, 10.1007/978-1-4612-3048-9 |
Reference:
|
[3] Burlando, L.: Comparisons between different spectra of an element in a Banach algebra.Int. J. Math. Sci. 16 (1993), 819-822. Zbl 0808.46065, MR 1234831, 10.1155/S0161171293001036 |
Reference:
|
[4] Conway, J. B.: A Course in Functional Analysis.Graduate Texts in Mathematics 96. Springer, New York (2010). Zbl 0706.46003, MR 1070713, 10.1007/978-1-4757-4383-8 |
Reference:
|
[5] Groenewald, L., Harte, R. E., Raubenheimer, H.: Perturbation by inessential and Riesz elements.Quaest. Math. 12 (1989), 439-446. Zbl 0705.46022, MR 1021942, 10.1080/16073606.1989.9632195 |
Reference:
|
[6] Groenewald, L., Raubenheimer, H.: A note on the singular and exponential spectrum in Banach algebras.Quaest. Math. 11 (1988), 399-408. Zbl 0673.46022, MR 0969558, 10.1080/16073606.1988.9632154 |
Reference:
|
[7] Harte, R. E.: The exponential spectrum in Banach algebras.Proc. Am. Math. Soc. 58 (1976), 114-118. Zbl 0338.46043, MR 0407603, 10.1090/S0002-9939-1976-0407603-5 |
Reference:
|
[8] Harte, R. E.: Invertibility and Singularity for Bounded Linear Operators.Pure and Applied Mathematics 109. Marcel Dekker, New York (1988). Zbl 0636.47001, MR 0920812 |
Reference:
|
[9] Harte, R. E., Wickstead, A. W.: Boundaries, hulls and spectral mapping theorems.Proc. R. Ir. Acad., Sect. A 81 (1981), 201-208. Zbl 0489.46041, MR 0654819 |
Reference:
|
[10] Lindeboom, L., Raubenheimer, H.: A note on the singular spectrum.Extr. Math. 13 (1998), 349-357. Zbl 1054.46510, MR 1695568 |
Reference:
|
[11] Lindeboom, L., Raubenheimer, H.: Different exponential spectra in Banach algebras.Rocky Mt. J. Math. 29 (1999), 957-970. Zbl 0969.46038, MR 1733077, 10.1216/rmjm/1181071617 |
Reference:
|
[12] Lindeboom, L., Raubenheimer, H.: On regularities and Fredholm theory.Czech. Math. J. 52 (2002), 565-574. Zbl 1010.46045, MR 1923262, 10.1023/A:1021727829750 |
Reference:
|
[13] Mouton, H. du T.: On inessential ideals in Banach algebras.Quaest. Math. 17 (1994), 59-66. Zbl 0818.46053, MR 1276008, 10.1080/16073606.1994.9632217 |
Reference:
|
[14] Mouton, H. du T., Mouton, S., Raubenheimer, H.: Ruston elements and Fredholm theory relative to arbitrary homomorphisms.Quaest. Math. 34 (2011), 341-359. Zbl 1274.46095, MR 2844530, 10.2989/16073606.2011.622893 |
Reference:
|
[15] Mouton, H. du T., Raubenheimer, H.: Fredholm theory relative to two Banach algebra homomorphisms.Quaest. Math. 14 (1991), 371-382. Zbl 0763.46035, MR 1143042, 10.1080/16073606.1991.9631656 |
Reference:
|
[16] Mouton, S.: On the boundary spectrum in Banach algebras.Bull. Aust. Math. Soc. 74 (2006), 239-246. Zbl 1113.46044, MR 2260492, 10.1017/S0004972700035681 |
Reference:
|
[17] Mouton, S.: Mapping and continuity properties of the boundary spectrum in Banach algebras.Ill. J. Math. 53 (2009), 757-767. Zbl 1210.46033, MR 2727353, 10.1215/ijm/1286212914 |
Reference:
|
[18] Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras.Operator Theory: Advances and Applications 139. Birkhäuser, Basel (2007). Zbl 1208.47001, MR 2355630, 10.1007/978-3-0348-7788-6 |
Reference:
|
[19] Raubenheimer, H., Swartz, A.: Radius preserving (semi)regularities in Banach algebras.Quaest. Math. 42 (2019), 811-822. Zbl 1439.46039, MR 3989360, 10.2989/16073606.2018.1501439 |
Reference:
|
[20] Raubenheimer, H., Swartz, A.: Regularity-type properties of the boundary spectrum in Banach algebras.Rocky Mt. J. Math. 49 (2019), 2747-2754. Zbl 07163196, MR 4058347, 10.1216/RMJ-2019-49-8-2747 |
Reference:
|
[21] Taylor, A. E., Lay, D. C.: Introduction to Functional Analysis.John Wiley & Sons, New York (1980). Zbl 0501.46003, MR 0564653 |
Reference:
|
[22] Živkovič-Zlatanovič, S. Č., Harte, R. E.: Polynomially Riesz elements.Quaest. Math. 38 (2015), 573-586. Zbl 06696038, MR 3403668, 10.2989/16073606.2015.1026558 |
. |