Previous |  Up |  Next

Article

Title: $\alpha$-filters and $\alpha$-order-ideals in distributive quasicomplemented semilattices (English)
Author: Calomino, Ismael
Author: Celani, Sergio
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 1
Year: 2021
Pages: 15-32
Summary lang: English
.
Category: math
.
Summary: We introduce some particular classes of filters and order-ideals in distributive semilattices, called $\alpha$-filters and $\alpha$-order-ideals, respectively. In particular, we study $\alpha$-filters and $\alpha$-order-ideals in distributive quasicomplemented semilattices. We also characterize the filters-congruence-cokernels in distributive quasicomplemented semilattices through $\alpha$-order-ideals. (English)
Keyword: bounded distributive semilattice
Keyword: quasicomplement
Keyword: relative annihilator
Keyword: order-ideal
Keyword: filter
MSC: 03G10
MSC: 06A12
idMR: MR4270464
DOI: 10.14712/1213-7243.2021.004
.
Date available: 2021-07-26T11:08:27Z
Last updated: 2023-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148940
.
Reference: [1] Balbes R., Dwinger P.: Distributive Lattices.University of Missouri Press, Columbia, 1974. Zbl 0321.06012, MR 0373985
Reference: [2] Celani S. A.: Topological representation of distributive semilattices.Sci. Math. Jpn. 58 (2003), no. 1, 55–65. Zbl 1041.06002, MR 1987817
Reference: [3] Celani S. A.: Distributive pseudocomplemented semilattices.Asian-Eur. J. Math. 3 (2010), no. 1, 21–30. MR 2654807, 10.1142/S1793557110000039
Reference: [4] Celani S. A.: Remarks on annihilators preserving congruence relations.Math. Slovaca 62 (2012), no. 3, 389–398. MR 2915604, 10.2478/s12175-012-0016-y
Reference: [5] Celani S. A.: Relative annihilator-preserving congruence relations and relative annihilator-preserving homomorphisms in bounded distributive semilattices.Open Math. 13 (2015), no. 1, 165–177. MR 3314172
Reference: [6] Celani S., Calomino I.: Some remarks on distributive semilattices.Comment. Math. Univ. Carolin. 54 (2013), no. 3, 407–428. MR 3090419
Reference: [7] Chajda I., Halaš R., Kühr J.: Semilattice Structures.Research and Exposition in Mathematics, 30, Heldermann Verlag, Lemgo, 2007. MR 2326262
Reference: [8] Cornish W. H.: Normal lattices.J. Austral. Math. Soc. 14 (1972), 200–215. MR 0313148, 10.1017/S1446788700010041
Reference: [9] Cornish W. H.: Annulets and $\alpha$-ideals in a distributive lattice.J. Austral. Math. Soc. 15 (1973), 70–77. MR 0344170, 10.1017/S1446788700012775
Reference: [10] Cornish W.: Quasicomplemented lattices.Comment. Math. Univ. Carolinae 15 (1974), 501–511. MR 0354468
Reference: [11] Grätzer G.: General Lattice Theory.Birkhäuser Verlag, Basel, 1998. MR 1670580
Reference: [12] Jayaram C.: Quasicomplemented semilattices.Acta Math. Acad. Sci. Hungar. 39 (1982), no. 1–3, 39–47. MR 0653670, 10.1007/BF01895211
Reference: [13] Mandelker M.: Relative annihilators in lattices.Duke Math. J. 37 (1970), 377–386. Zbl 0206.29701, MR 0256951, 10.1215/S0012-7094-70-03748-8
Reference: [14] Mokbel K. A.: $\alpha$-ideals in $0$-distributive posets.Math. Bohem. 140 (2015), no. 3, 319–328. MR 3397260, 10.21136/MB.2015.144398
Reference: [15] Murty P. V. R., Murty M. K.: Some remarks on certain classes of semilattices.Internat. J. Math. Math. Sci. 5 (1982), no. 1, 21–30. MR 0666490, 10.1155/S0161171282000039
Reference: [16] Pawar Y., Mane D.: $\alpha$-ideals in $0$-distributive semilattices and $0$-distributive lattices.Indian J. Pure Appl. Math. 24 (1993), 435–443. MR 1234802
Reference: [17] Pawar Y. S., Khopade S. S.: $\alpha$-ideals and annihilator ideals in $0$-distributive lattices.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 49 (2010), no. 1, 63–74. MR 2797524
Reference: [18] Ramana Murty P. V., Ramam V.: On filters and filter congruences in semilattices.Algebra Universalis 12 (1981), no. 3, 343–351. MR 0624300, 10.1007/BF02483894
Reference: [19] Speed T. P.: Some remarks on a class of distributive lattices.J. Austral. Math. Soc. 9 (1969), 289–296. MR 0246800, 10.1017/S1446788700007205
Reference: [20] Varlet J. C.: A generalization of the notion of pseudo-complementedness.Bull. Soc. Roy. Sci. Liège 37 (1968), 149–158. Zbl 0162.03501, MR 0228390
Reference: [21] Varlet J. C.: Relative annihilators in semilattices.Bull. Austral. Math. Soc. 9 (1973), 169–185. Zbl 0258.06009, MR 0382091, 10.1017/S0004972700043094
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-1_2.pdf 263.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo