Previous |  Up |  Next

Article

Title: Solution of option pricing equations using orthogonal polynomial expansion (English)
Author: Baustian, Falko
Author: Filipová, Kateřina
Author: Pospíšil, Jan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 4
Year: 2021
Pages: 553-582
Summary lang: English
.
Category: math
.
Summary: We study both analytic and numerical solutions of option pricing equations using systems of orthogonal polynomials. Using a Galerkin-based method, we solve the parabolic partial differential equation for the Black-Scholes model using Hermite polynomials and for the Heston model using Hermite and Laguerre polynomials. We compare the obtained solutions to existing semi-closed pricing formulas. Special attention is paid to the solution of the Heston model at the boundary with vanishing volatility. (English)
Keyword: orthogonal polynomial expansion
Keyword: Hermite polynomial
Keyword: Laguerre polynomial
Keyword: Heston model
Keyword: option pricing
MSC: 33C45
MSC: 65M60
MSC: 91G20
MSC: 91G60
idZBL: 07396167
idMR: MR4283303
DOI: 10.21136/AM.2021.0361-19
.
Date available: 2021-07-09T08:13:33Z
Last updated: 2023-09-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148972
.
Reference: [1] Abramowitz, M., (eds.), I. A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.National Bureau of Standards Applied Mathematics Series 55. U. S. Department of Commerce, Washington (1964). Zbl 0171.38503, MR 0167642
Reference: [2] Ackerer, D., Filipović, D.: Option pricing with orthogonal polynomial expansions.Math. Finance 30 (2020), 47-84. Zbl 07200951, MR 4067070, 10.1111/mafi.12226
Reference: [3] Alziary, B., Takáč, P.: Analytic solutions and complete markets for the Heston model with stochastic volatility.Electron. J. Differ. Equ. 2018 (2018), Article ID 168, 54 pages. Zbl 1406.35415, MR 3874931
Reference: [4] Alziary, B., Takáč, P.: The Heston stochastic volatility model has a boundary trace at zero volatility.Available at https://arxiv.org/abs/2004.00444 (2020), 48 pages.
Reference: [5] Aubin, J. P.: Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 21 (1967), 599-637. Zbl 0276.65052, MR 0233068
Reference: [6] Bates, D. S.: Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche mark options.Rev. Financ. Stud. 9 (1996), 69-107. 10.1093/rfs/9.1.69
Reference: [7] Baustian, F., Mrázek, M., Pospíšil, J., Sobotka, T.: Unifying pricing formula for several stochastic volatility models with jumps.Appl. Stoch. Models Bus. Ind. 33 (2017), 422-442. Zbl 1420.91444, MR 3690484, 10.1002/asmb.2248
Reference: [8] Birkhoff, G., Schultz, M. H., Varga, R. S.: Piecewise Hermite interpolation in one and two variables with applications to partial differential equations.Numer. Math. 11 (1968), 232-256. Zbl 0159.20904, MR 0226817, 10.1007/BF02161845
Reference: [9] Black, F., Scholes, M.: The pricing of options and corporate liabilities.J. Polit. Econ. 81 (1973), 637-654. Zbl 1092.91524, MR 3363443, 10.1086/260062
Reference: [10] Bramble, J. H., Schatz, A. H., Thomée, V., Wahlbin, L. B.: Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations.SIAM J. Numer. Anal. 14 (1977), 218-241. Zbl 0364.65084, MR 0448926, 10.1137/0714015
Reference: [11] Bramble, J. H., Thomée, V.: Discrete time Galerkin methods for a parabolic boundary value problem.Ann. Mat. Pura Appl., IV. Ser. 101 (1974), 115-152. Zbl 0306.65073, MR 0388805, 10.1007/BF02417101
Reference: [12] Corrado, C. J., Su, T.: Skewness and kurtosis in S&P 500 index returns implied by option prices.J. Financ. Research 19 (1996), 175-192. 10.1111/j.1475-6803.1996.tb00592.x
Reference: [13] J. C. Cox, J. E. Ingersoll, Jr., S. A. Ross: A theory of the term structure of interest rates.Econometrica 53 (1985), 385-407. Zbl 1274.91447, MR 785475, 10.2307/1911242
Reference: [14] Daněk, J., Pospíšil, J.: Numerical aspects of integration in semi-closed option pricing formulas for stochastic volatility jump diffusion models.Int. J. Comput. Math. 97 (2020), 1268-1292. MR 4095540, 10.1080/00207160.2019.1614174
Reference: [15] Davis, M., Obłój, J.: Market completion using options.Advances in Mathematics of Finance Banach Center Publications 83. Polish Academy of Sciences, Warsaw (2008), 49-60. Zbl 1153.91479, MR 2509226, 10.4064/bc83-0-4
Reference: [16] J. Douglas, Jr., T. Dupont: Galerkin methods for parabolic equations.SIAM J. Numer. Anal. 7 (1970), 575-626. Zbl 0224.35048, MR 0277126, 10.1137/0707048
Reference: [17] Dupont, T.: Some $L^2$ error estimates for parabolic Galerkin methods.The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Academic Press, New York (1972), 491-504. Zbl 0279.65086, MR 0403255, 10.1016/B978-0-12-068650-6.50022-8
Reference: [18] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19. American Mathematical Society, Providence (2010). Zbl 1194.35001, MR 2597943, 10.1090/gsm/019
Reference: [19] Filipová, K.: Solution of Option Pricing Equations Using Orthogonal Polynomial Expansion: Master's Thesis.University of West Bohemia, Plzeň (2019).
Reference: [20] Fix, G., Nassif, N.: On finite element approximations to time-dependent problems.Numer. Math. 19 (1972), 127-135. Zbl 0244.65063, MR 0311122, 10.1007/BF01402523
Reference: [21] Fouque, J.-P., Papanicolaou, G., Sircar, K. R.: Derivatives in Financial Markets with Stochastic Volatility.Cambridge University Press, Cambridge (2000). Zbl 0954.91025, MR 1768877
Reference: [22] Funaro, D.: Polynomial Approximation of Differential Equations.Lecture Notes in Physics: Monographs 8. Springer, Berlin (1992). Zbl 0774.41010, MR 1176949, 10.1007/978-3-540-46783-0
Reference: [23] Gautschi, W.: Orthogonal Polynomials: Computation and Approximation.Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2004). Zbl 1130.42300, MR 2061539
Reference: [24] Heston, S. L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options.Rev. Financ. Stud. 6 (1993), 327-343. Zbl 1384.35131, MR 3929676, 10.1093/rfs/6.2.327
Reference: [25] Heston, S. L., Rossi, A. G.: A spanning series approach to options.Review Asset Pricing Studies 7 (2017), 2-42. 10.1093/rapstu/raw006
Reference: [26] Hull, J. C.: Options, Futures, and Other Derivatives.Pearson, New York (2018). Zbl 1087.91025
Reference: [27] Hull, J. C., White, A. D.: The pricing of options on assets with stochastic volatilities.J. Finance 42 (1987), 281-300. 10.1111/j.1540-6261.1987.tb02568.x
Reference: [28] Jarrow, R., Rudd, A.: Approximate option valuation for arbitrary stochastic processes.J. Financ. Econ. 10 (1982), 347-369. 10.1016/0304-405X(82)90007-1
Reference: [29] Kallenberg, O.: Foundations of Modern Probability.Probability and Its Applications. Springer, New York (2002). Zbl 0996.60001, MR 1876169, 10.1007/978-1-4757-4015-8
Reference: [30] Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus.Graduate Texts in Mathematics 113. Springer, New York (1991). Zbl 0734.60060, MR 1121940, 10.1007/978-1-4684-0302-2
Reference: [31] Kufner, A.: Weighted Sobolev Spaces.Teubner-Texte zur Mathematik 83. B. G. Teubner, Leipzig (1980). Zbl 0455.46034, MR 664599
Reference: [32] Kufner, A., Sändig, A.-M.: Some Applications of Weighted Sobolev Spaces.Teubner-Texte zur Mathematik 100. B. G. Teubner, Leipzig (1987). Zbl 0662.46034, MR 926688
Reference: [33] Lebedev, N. N.: Special Functions and Their Applications.Prentice-Hall, Englewood Cliffs (1965). Zbl 0131.07002, MR 0174795
Reference: [34] Lewis, A. L.: Option Valuation Under Stochastic Volatility: With Mathematica Code.Finance Press, Newport Beach (2000). Zbl 0937.91060, MR 1742310
Reference: [35] Lewis, A. L.: Option Valuation Under Stochastic Volatility II: With Mathematica Code.Finance Press, Newport Beach (2016). Zbl 1391.91001, MR 3526206
Reference: [36] Olver, F. W. J., Lozier, D. W., Boisvert, R. F., (eds.), C. W. Clark: NIST Handbook of Mathematical Functions.Cambridge University Press, Cambridge (2010). Zbl 1198.00002, MR 2723248
Reference: [37] Pospíšil, J., Švígler, V.: Isogeometric analysis in option pricing.Int. J. Comput. Math. 96 (2019), 2177-2200. MR 4008120, 10.1080/00207160.2018.1494826
Reference: [38] Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P.: Numerical recipes: The Art of Scientific Computing.Cambridge University Press, Cambridge (2007). Zbl 1132.65001, MR 2371990
Reference: [39] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I: Functional Analysis.Academic Press, New York (1980). Zbl 0459.46001, MR 751959, 10.1016/b978-0-12-585001-8.x5001-6
Reference: [40] Rouah, F. D.: The Heston Model and Its Extensions in Matlab and C\#.Wiley Finance Series. John Wiley & Sons, Hoboken (2013). Zbl 1304.91007, 10.1002/9781118656471
Reference: [41] Stein, E. M., Stein, J. C.: Stock price distributions with stochastic volatility: An analytic approach.Rev. Financ. Stud. 4 (1991), 727-752. Zbl 06857133, 10.1093/rfs/4.4.727
Reference: [42] Swartz, B., Wendroff, B.: Generalized finite-difference schemes.Math. Comput. 23 (1969), 37-49. Zbl 0184.38502, MR 0239768, 10.1090/S0025-5718-1969-0239768-7
Reference: [43] Szegö, G.: Orthogonal Polynomials.Colloquium Publications 23. American Mathematical Society, Providence (1975). Zbl 0305.42011, MR 0372517, 10.1090/coll/023
Reference: [44] Thangavelu, S.: Lectures on Hermite and Laguerre expansions.Mathematical Notes 42. Princeton University Press, Princeton (1993). Zbl 0791.41030, MR 1215939, 10.2307/j.ctv10crg8w
Reference: [45] Thomée, V.: Some error estimates in Galerkin methods for parabolic equations.Mathematical Aspects of Finite Element Methods Lecture Notes in Mathematics 606. Springer, Berlin (1977), 343-352. Zbl 0356.35043, MR 0658321, 10.1007/BFb0064472
Reference: [46] Thomée, V.: Galerkin-finite element methods for parabolic equations.Proceedings of the International Congress of Mathematicians. Vol. 2 Academia Scientiarum Fennica, Helsinki (1980), 943-952. Zbl 0418.65050, MR 0562711
Reference: [47] Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems.Springer Series in Computational Mathematics 25. Springer, Berlin (2006). Zbl 1105.65102, MR 2249024, 10.1007/3-540-33122-0
Reference: [48] Sydow, L. von: BENCHOP -- the BENCHmarking project in option pricing.Int. J. Comput. Math. 92 (2015), 2361-2379. Zbl 1335.91113, MR 3417364, 10.1080/00207160.2015.1072172
Reference: [49] Wheeler, M. F.: A priori $L_2$ estimates for Galerkin approximations to parabolic partial differential equations.SIAM J. Numer. Anal. 10 (1973), 723-759. Zbl 0232.35060, MR 0351124, 10.1137/0710062
Reference: [50] Wilmott, P.: Derivatives: The Theory and Practice of Financial Engineering.John Wiley & Sons, Chichester (1998).
Reference: [51] Xiu, D.: Hermite polynomial based expansion of European option prices.J. Econom. 179 (2014), 158-177. Zbl 1298.91171, MR 3170222, 10.1016/j.jeconom.2014.01.003
.

Files

Files Size Format View
AplMat_66-2021-4_4.pdf 619.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo