Title:
|
Global existence and $L_p$ decay estimate of solution for Cahn-Hilliard equation with inertial term (English) |
Author:
|
Xu, Hongmei |
Author:
|
Li, Qi |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
66 |
Issue:
|
4 |
Year:
|
2021 |
Pages:
|
583-597 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The Cauchy problem of the Cahn-Hilliard equation with inertial term in multi space dimension is considered. Based on detailed analysis of Green's function, using fixed-point theorem, we get the global existence in time of classical solution with large initial data. Furthermore, we get $L_p$ decay rate of the solution. (English) |
Keyword:
|
Cahn-Hilliard equation with inertial term |
Keyword:
|
large initial data |
Keyword:
|
classical solution |
Keyword:
|
$L_p$ decay |
MSC:
|
35M11 |
idZBL:
|
07396168 |
idMR:
|
MR4283304 |
DOI:
|
10.21136/AM.2021.0180-19 |
. |
Date available:
|
2021-07-09T08:14:18Z |
Last updated:
|
2023-09-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148973 |
. |
Reference:
|
[1] Caffarelli, L. A., Muler, N. E.: An $L^\infty$ bound for solutions of the Cahn-Hilliard equation.Arch. Ration. Mech. Anal. 133 (1995), 129-144. Zbl 0851.35010, MR 1367359, 10.1007/BF00376814 |
Reference:
|
[2] Cahn, J. W., Hilliard, J. E.: Free energy of a nonuniform system. I. Interfacial free energy.J. Chem. Phys. 28 (1958), 258-267. Zbl 1431.35066, 10.1063/1.1744102 |
Reference:
|
[3] Deng, S., Wang, W., Zhao, H.: Existence theory and $L^p$ estimates for the solution of nonlinear viscous wave equation.Nonlinear Anal., Real World Appl. 11 (2010), 4404-4414. Zbl 1202.35138, MR 2683885, 10.1016/j.nonrwa.2010.05.024 |
Reference:
|
[4] Efendiev, M., Miranville, A., Zelik, S.: Exponential attractors for a singularly perturbed Cahn-Hilliard system.Math. Nachr. 272 (2004), 11-31. Zbl 1046.37047, MR 2079758, 10.1002/mana.200310186 |
Reference:
|
[5] Elliott, C. M., Zheng, S.: On the Cahn-Hilliard equation.Arch. Ration. Mech. Anal. 96 (1986), 339-357. Zbl 0624.35048, MR 0855754, 10.1007/BF00251803 |
Reference:
|
[6] Galenko, P.: Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system.Phys. Lett., A 287 (2001), 190-197. 10.1016/S0375-9601(01)00489-3 |
Reference:
|
[7] Galenko, P., Jou, D.: Diffuse-interface model for rapid phase transformations in nonequilibrium systems.Phys. Rev. E 71 (2005), Article ID 046125. 10.1103/PhysRevE.71.046125 |
Reference:
|
[8] Galenko, P., Lebedev, V.: Analysis of the dispersion relation in spinodal decomposition of a binary system.Philos. Mag. Lett. 87 (2007), 821-827. 10.1080/09500830701395127 |
Reference:
|
[9] Galenko, P., Lebedev, V.: Local nonequilibrium effect on spinodal decomposition in a binary system.Int. J. Thermodyn. 11 (2008), 21-28. |
Reference:
|
[10] Galenko, P., Lebedev, V.: Non-eqilibrium effects in spinodal decomposition of a binary system.Phys. Lett., A 372 (2008), 985-989. Zbl 1217.82029, 10.1016/j.physleta.2007.08.070 |
Reference:
|
[11] Gatti, S., Grasselli, M., Miranville, A., Pata, V.: On the hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation.J. Math. Anal. Appl. 312 (2005), 230-247. Zbl 1160.35518, MR 2175216, 10.1016/j.jmaa.2005.03.029 |
Reference:
|
[12] Grasselli, M., Petzeltová, H., Schimperna, G.: Asymptotic behavior of a nonisothermal viscous Cahn-Hilliard equation with inertial term.J. Differ. Equations 239 (2007), 38-60. Zbl 1129.35017, MR 2341548, 10.1016/j.jde.2007.05.003 |
Reference:
|
[13] Grasselli, M., Schimperna, G., Segatti, A., Zelik, S.: On the 3D Cahn-Hilliard equation with inertial term.J. Evol. Equ. 9 (2009), 371-404. Zbl 1239.35160, MR 2511557, 10.1007/s00028-009-0017-7 |
Reference:
|
[14] Grasselli, M., Schimperna, G., Zelik, S.: On the 2D Cahn-Hilliard equation with inertial term.Commun. Partial Differ. Equations 34 (2009), 137-170. Zbl 1173.35086, MR 2512857, 10.1080/03605300802608247 |
Reference:
|
[15] Grasselli, M., Schimperna, G., Zelik, S.: Trajectory and smooth attractors for CahnHilliard equations with inertial term.Nonlinearity 23 (2010), 707-737. Zbl 1198.35038, MR 2593916, 10.1088/0951-7715/23/3/016 |
Reference:
|
[16] Li, T. T., Chen, Y. M.: The Nonlinear Evolution Euqation.Scientific Press, Beijing (1989), Chinese. |
Reference:
|
[17] Wang, W., Wang, W.: The pointwise estimates of solutions for semilinear dissipative wave equation in multi-dimensions.J. Math. Anal. Appl. 366 (2010), 226-241. Zbl 1184.35218, MR 2593648, 10.1016/j.jmaa.2009.12.013 |
Reference:
|
[18] Wang, W., Wu, Z.: Optimal decay rate of solutions for Cahn-Hilliard equation with inertial term in multi-dimensions.J. Math. Anal. Appl. 387 (2012), 349-358. Zbl 1229.35252, MR 2845755, 10.1016/j.jmaa.2011.09.016 |
Reference:
|
[19] Zheng, S., Milani, A.: Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations.Nonlinear Anal., Theory Methods Appl., Ser. A 57 (2004), 843-877. Zbl 1055.35028, MR 2067737, 10.1016/j.na.2004.03.023 |
Reference:
|
[20] Zheng, S., Milani, A.: Global attractors for singular perturbations of the Cahn-Hilliard equations.J. Differ. Equations 209 (2005), 101-139. Zbl 1063.35041, MR 2107470, 10.1016/j.jde.2004.08.026 |
. |