Previous |  Up |  Next

Article

Title: Global existence and $L_p$ decay estimate of solution for Cahn-Hilliard equation with inertial term (English)
Author: Xu, Hongmei
Author: Li, Qi
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 4
Year: 2021
Pages: 583-597
Summary lang: English
.
Category: math
.
Summary: The Cauchy problem of the Cahn-Hilliard equation with inertial term in multi space dimension is considered. Based on detailed analysis of Green's function, using fixed-point theorem, we get the global existence in time of classical solution with large initial data. Furthermore, we get $L_p$ decay rate of the solution. (English)
Keyword: Cahn-Hilliard equation with inertial term
Keyword: large initial data
Keyword: classical solution
Keyword: $L_p$ decay
MSC: 35M11
idZBL: 07396168
idMR: MR4283304
DOI: 10.21136/AM.2021.0180-19
.
Date available: 2021-07-09T08:14:18Z
Last updated: 2023-09-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148973
.
Reference: [1] Caffarelli, L. A., Muler, N. E.: An $L^\infty$ bound for solutions of the Cahn-Hilliard equation.Arch. Ration. Mech. Anal. 133 (1995), 129-144. Zbl 0851.35010, MR 1367359, 10.1007/BF00376814
Reference: [2] Cahn, J. W., Hilliard, J. E.: Free energy of a nonuniform system. I. Interfacial free energy.J. Chem. Phys. 28 (1958), 258-267. Zbl 1431.35066, 10.1063/1.1744102
Reference: [3] Deng, S., Wang, W., Zhao, H.: Existence theory and $L^p$ estimates for the solution of nonlinear viscous wave equation.Nonlinear Anal., Real World Appl. 11 (2010), 4404-4414. Zbl 1202.35138, MR 2683885, 10.1016/j.nonrwa.2010.05.024
Reference: [4] Efendiev, M., Miranville, A., Zelik, S.: Exponential attractors for a singularly perturbed Cahn-Hilliard system.Math. Nachr. 272 (2004), 11-31. Zbl 1046.37047, MR 2079758, 10.1002/mana.200310186
Reference: [5] Elliott, C. M., Zheng, S.: On the Cahn-Hilliard equation.Arch. Ration. Mech. Anal. 96 (1986), 339-357. Zbl 0624.35048, MR 0855754, 10.1007/BF00251803
Reference: [6] Galenko, P.: Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system.Phys. Lett., A 287 (2001), 190-197. 10.1016/S0375-9601(01)00489-3
Reference: [7] Galenko, P., Jou, D.: Diffuse-interface model for rapid phase transformations in nonequilibrium systems.Phys. Rev. E 71 (2005), Article ID 046125. 10.1103/PhysRevE.71.046125
Reference: [8] Galenko, P., Lebedev, V.: Analysis of the dispersion relation in spinodal decomposition of a binary system.Philos. Mag. Lett. 87 (2007), 821-827. 10.1080/09500830701395127
Reference: [9] Galenko, P., Lebedev, V.: Local nonequilibrium effect on spinodal decomposition in a binary system.Int. J. Thermodyn. 11 (2008), 21-28.
Reference: [10] Galenko, P., Lebedev, V.: Non-eqilibrium effects in spinodal decomposition of a binary system.Phys. Lett., A 372 (2008), 985-989. Zbl 1217.82029, 10.1016/j.physleta.2007.08.070
Reference: [11] Gatti, S., Grasselli, M., Miranville, A., Pata, V.: On the hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation.J. Math. Anal. Appl. 312 (2005), 230-247. Zbl 1160.35518, MR 2175216, 10.1016/j.jmaa.2005.03.029
Reference: [12] Grasselli, M., Petzeltová, H., Schimperna, G.: Asymptotic behavior of a nonisothermal viscous Cahn-Hilliard equation with inertial term.J. Differ. Equations 239 (2007), 38-60. Zbl 1129.35017, MR 2341548, 10.1016/j.jde.2007.05.003
Reference: [13] Grasselli, M., Schimperna, G., Segatti, A., Zelik, S.: On the 3D Cahn-Hilliard equation with inertial term.J. Evol. Equ. 9 (2009), 371-404. Zbl 1239.35160, MR 2511557, 10.1007/s00028-009-0017-7
Reference: [14] Grasselli, M., Schimperna, G., Zelik, S.: On the 2D Cahn-Hilliard equation with inertial term.Commun. Partial Differ. Equations 34 (2009), 137-170. Zbl 1173.35086, MR 2512857, 10.1080/03605300802608247
Reference: [15] Grasselli, M., Schimperna, G., Zelik, S.: Trajectory and smooth attractors for CahnHilliard equations with inertial term.Nonlinearity 23 (2010), 707-737. Zbl 1198.35038, MR 2593916, 10.1088/0951-7715/23/3/016
Reference: [16] Li, T. T., Chen, Y. M.: The Nonlinear Evolution Euqation.Scientific Press, Beijing (1989), Chinese.
Reference: [17] Wang, W., Wang, W.: The pointwise estimates of solutions for semilinear dissipative wave equation in multi-dimensions.J. Math. Anal. Appl. 366 (2010), 226-241. Zbl 1184.35218, MR 2593648, 10.1016/j.jmaa.2009.12.013
Reference: [18] Wang, W., Wu, Z.: Optimal decay rate of solutions for Cahn-Hilliard equation with inertial term in multi-dimensions.J. Math. Anal. Appl. 387 (2012), 349-358. Zbl 1229.35252, MR 2845755, 10.1016/j.jmaa.2011.09.016
Reference: [19] Zheng, S., Milani, A.: Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations.Nonlinear Anal., Theory Methods Appl., Ser. A 57 (2004), 843-877. Zbl 1055.35028, MR 2067737, 10.1016/j.na.2004.03.023
Reference: [20] Zheng, S., Milani, A.: Global attractors for singular perturbations of the Cahn-Hilliard equations.J. Differ. Equations 209 (2005), 101-139. Zbl 1063.35041, MR 2107470, 10.1016/j.jde.2004.08.026
.

Files

Files Size Format View
AplMat_66-2021-4_5.pdf 241.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo