Previous |  Up |  Next

Article

Title: Traveling wave solutions in a class of higher dimensional lattice differential systems with delays and applications (English)
Author: He, Yanli
Author: Li, Kun
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 4
Year: 2021
Pages: 641-656
Summary lang: English
.
Category: math
.
Summary: In this paper, we are concerned with the existence of traveling waves in a class of delayed higher dimensional lattice differential systems with competitive interactions. Due to the lack of quasimonotonicity for reaction terms, we use the cross iterative and Schauder's fixed-point theorem to prove the existence of traveling wave solutions. We apply our results to delayed higher-dimensional lattice reaction-diffusion competitive system. (English)
Keyword: higher dimensional lattice
Keyword: traveling wave solution
Keyword: delay
Keyword: upper and lower solutions
MSC: 34K10
MSC: 37L60
MSC: 39A10
idZBL: 07396171
idMR: MR4283307
DOI: 10.21136/AM.2021.0159-19
.
Date available: 2021-07-09T08:15:44Z
Last updated: 2023-09-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148976
.
Reference: [1] Cahn, J. W., Mallet-Paret, J., Vleck, E. S. Van: Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice.SIAM J. Appl. Math. 59 (1999), 455-493. Zbl 0917.34052, MR 1654427, 10.1137/S0036139996312703
Reference: [2] Chen, X., Guo, J.-S.: Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations.J. Differ. Equations 184 (2002), 549-569. Zbl 1010.39004, MR 1929888, 10.1006/jdeq.2001.4153
Reference: [3] Chen, X., Guo, J.-S.: Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics.Math. Ann. 326 (2003), 123-146. Zbl 1086.34011, MR 1981615, 10.1007/s00208-003-0414-0
Reference: [4] Cheng, C.-P., Li, W.-T., Wang, Z.-C., Zheng, S.: Traveling waves connecting equilibrium and periodic orbit for a delayed population model on a two-dimensional spatial lattice.Int. J. Bifurcation Chaos Appl. Sci. Eng. 26 (2016), Article ID 1650049, 13 pages. Zbl 1336.34106, MR 3482808, 10.1142/S0218127416500498
Reference: [5] Chow, S.-N., Mallet-Paret, J., Shen, W.: Traveling waves in lattice dynamical systems.J. Differ. Equations 149 (1998), 248-291. Zbl 0911.34050, MR 1646240, 10.1006/jdeq.1998.3478
Reference: [6] Guo, J.-S., Wu, C.-H.: Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system.Osaka J. Math. 45 (2008), 327-346. Zbl 1155.34016, MR 2441943
Reference: [7] Guo, J.-S., Wu, C.-H.: Traveling wave front for a two-component lattice dynamical system arising in competition models.J. Differ. Equations 252 (2012), 4357-4391. Zbl 1251.34018, MR 2881041, 10.1016/j.jde.2012.01.009
Reference: [8] Hankerson, D., Zinner, B.: Wavefronts for a cooperative tridiagonal system of differential equations.J. Dyn. Differ. Equations 5 (1993), 359-373. Zbl 0777.34013, MR 1223452, 10.1007/BF01053165
Reference: [9] Huang, J., Lu, G., Ruan, S.: Traveling wave solutions in delayed lattice differential equations with partial monotonicity.Nonlinear Anal., Theory Methods Appl., Ser. A 60 (2005), 1331-1350. Zbl 1084.34059, MR 2112956, 10.1016/j.na.2004.10.020
Reference: [10] Huang, J., Lu, G., Zou, X.: Existence of traveling wave fronts of delayed lattice differential equations.J. Math. Anal. Appl. 298 (2004), 538-558. Zbl 1126.34323, MR 2086974, 10.1016/j.jmaa.2004.05.027
Reference: [11] Keener, J. P.: Propagation and its failure in coupled systems of discrete excitable cells.SIAM J. Appl. Math. 47 (1987), 556-572. Zbl 0649.34019, MR 0889639, 10.1137/0147038
Reference: [12] Li, K., Huang, J., Li, X., He, Y.: Traveling wave fronts in a delayed lattice competitive system.Appl. Anal. 97 (2018), 982-999. Zbl 1400.34125, MR 3777853, 10.1080/00036811.2017.1295450
Reference: [13] Li, K., Li, X.: Traveling wave solutions in a delayed lattice competition-cooperation system.J. Difference Equ. Appl. 24 (2018), 391-408. Zbl 1425.37050, MR 3757175, 10.1080/10236198.2017.1409222
Reference: [14] Li, W.-T., Lin, G., Ruan, S.: Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems.Nonlinearity 19 (2006), 1253-1273. Zbl 1103.35049, MR 2229998, 10.1088/0951-7715/19/6/003
Reference: [15] Lin, G., Li, W.-T.: Traveling waves in delayed lattice dynamical systems with competition interactions.Nonlinear Anal., Real World Appl. 11 (2010), 3666-3679. Zbl 1206.34099, MR 2683821, 10.1016/j.nonrwa.2010.01.013
Reference: [16] Mallet-Paret, J.: The Fredholm alternative for functional-differential equations of mixed type.J. Dyn. Differ. Equations 11 (1999), 1-47. Zbl 0927.34049, MR 1680463, 10.1023/A:1021889401235
Reference: [17] Mallet-Paret, J.: The global structure of traveling waves in spatially discrete dynamical systems.J. Dyn. Differ. Equations 11 (1999), 49-127. Zbl 0921.34046, MR 1680459, 10.1023/A:1021841618074
Reference: [18] Weng, P.: Spreading speed and traveling wavefront of an age-structured population diffusing in a 2D lattice strip.Discrete Contin. Dyn. Syst., Ser. B 12 (2009), 883-904. Zbl 1185.34114, MR 2552078, 10.3934/dcdsb.2009.12.883
Reference: [19] Wu, S.-L., Liu, S.-Y.: Travelling waves in delayed reaction-diffusion equations on higher dimensional lattices.J. Difference Equ. Appl. 19 (2013), 384-401. Zbl 1273.34074, MR 3037281, 10.1080/10236198.2011.645815
Reference: [20] Wu, J., Zou, X.: Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations.J. Differ. Equations 135 (1997), 315-357. Zbl 0877.34046, MR 1441274, 10.1006/jdeq.1996.3232
Reference: [21] Yu, Z.-X., Yuan, R.: Nonlinear stability of wavefronts for a delayed stage-structured population model on a 2-D lattice.Osaka J. Math. 50 (2013), 963-976. Zbl 1287.34061, MR 3161423
Reference: [22] Yu, Z.-X., Zhang, W., Wang, X.: Spreading speeds and travelling waves for non-monotone time-delayed 2D lattice systems.Math. Comput. Modelling 58 (2013), 1510-1521. MR 3143380, 10.1016/j.mcm.2013.06.009
Reference: [23] Zhao, H.-Q.: Asymptotic stability of traveling fronts in delayed reaction-diffusion monostable equations on higher-dimensional lattices.Electron. J. Differ. Equ. 2013 (2013), Article ID 119, 15 pages. Zbl 1288.35095, MR 3065072
Reference: [24] Zhao, H.-Q., Wu, S.-L.: Wave propagation for a reaction-diffusion model with a quiescent stage on a 2D spatial lattice.Nonlinear Anal., Real World Appl. 12 (2011), 1178-1191. Zbl 1243.34013, MR 2736300, 10.1016/j.nonrwa.2010.09.011
Reference: [25] Zinner, B.: Stability of traveling wavefronts for the discrete Nagumo equation.SIAM J. Math. Anal. 22 (1991), 1016-1020. Zbl 0739.34060, MR 1112063, 10.1137/0522066
Reference: [26] Zinner, B.: Existence of traveling wavefront solutions for the discrete Nagumo equation.J. Differ. Equations 96 (1992), 1-27. Zbl 0752.34007, MR 1153307, 10.1016/0022-0396(92)90142-A
Reference: [27] Zinner, B., Harris, G., Hudson, W.: Traveling wavefronts for the discrete Fisher's equation.J. Differ. Equations 105 (1993), 46-62. Zbl 0778.34006, MR 1237977, 10.1006/jdeq.1993.1082
Reference: [28] Zou, X.: Traveling wave fronts in spatially discrete reaction-diffusion equations on higher-dimensional lattices.Electron. J. Differ. Equ. 1997 (1997), 211-222. Zbl 0913.34041, MR 1672189
Reference: [29] Zou, X., Wu, J.: Local existence and stability of periodic traveling waves of lattice functional-differential equations.Can. Appl. Math. Q. 6 (1998), 397-418. Zbl 0919.34062, MR 1668040
.

Files

Files Size Format View
AplMat_66-2021-4_8.pdf 265.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo