Previous |  Up |  Next

Article

Title: Local well-posedness for a two-phase model with magnetic field and vacuum (English)
Author: Yang, Xiuhui
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 4
Year: 2021
Pages: 619-639
Summary lang: English
.
Category: math
.
Summary: This paper proves the local well-posedness of strong solutions to a two-phase model with magnetic field and vacuum in a bounded domain $\Omega \subset \mathbb {R}^3$ without the standard compatibility conditions. (English)
Keyword: two-phase flow
Keyword: magnetic field
Keyword: vacuum
Keyword: local well-posedness
MSC: 35D35
MSC: 35Q35
MSC: 76N10
MSC: 76T10
idZBL: 07396170
idMR: MR4283306
DOI: 10.21136/AM.2021.0222-19
.
Date available: 2021-07-09T08:15:08Z
Last updated: 2023-09-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148975
.
Reference: [1] Berselli, L. C., Spirito, S.: On the vanishing viscosity limit of 3D Navier-Stokes equations under slip boundary conditions in general domains.Commun. Math. Phys. 316 (2012), 171-198. Zbl 1254.35175, MR 2989457, 10.1007/s00220-012-1581-1
Reference: [2] Carrillo, J. A., Goudon, T.: Stability and asymptotic analysis of a fluid-particle interaction model.Commun. Partial Differ. Equations 31 (2006), 1349-1379. Zbl 1105.35088, MR 2254618, 10.1080/03605300500394389
Reference: [3] Cho, Y., Choe, H. J., Kim, H.: Unique solvability of the initial boundary value problems for compressible viscous fluids.J. Math. Pures Appl., IX. Sér. 83 (2004), 243-275. Zbl 1080.35066, MR 2038120, 10.1016/j.matpur.2003.11.004
Reference: [4] Choe, H. J., Kim, H.: Strong solutions of the Navier-Stokes equations for isentropic compressible fluids.J. Differ. Equations 190 (2003), 504-523. Zbl 1022.35037, MR 1970039, 10.1016/S0022-0396(03)00015-9
Reference: [5] Enomoto, Y., Shibata, Y.: On the $\mathcal R$-sectoriality and the initial boundary value problem for the viscous compressible fluid flow.Funkc. Ekvacioj, Ser. Int. 56 (2013), 441-505. Zbl 1296.35118, MR 3157151, 10.1619/fesi.56.441
Reference: [6] Fan, J., Yu, W.: Strong solution to the compressible magnetohydrodynamic equations with vacuum.Nonlinear Anal., Real World Appl. 10 (2009), 392-409. Zbl 1154.76389, MR 2451719, 10.1016/j.nonrwa.2007.10.001
Reference: [7] Gong, H., Li, J., Liu, X.-G., Zhang, X.: Local well-posedness of isentropic compressible Navier-Stokes equations with vacuum.Commun. Math. Sci. 18 (2020), 1891-1909. Zbl 07342276, MR 4195559, 10.4310/CMS.2020.v18.n7.a4
Reference: [8] Hong, G., Hou, X., Peng, H., Zhu, C.: Global existence for a class of large solutions to three-dimensional compressible magnetohydrodynamic equations with vacuum.SIAM J. Math. Anal. 49 (2017), 2409-2441. Zbl 1372.35164, MR 3668595, 10.1137/16M1100447
Reference: [9] Huang, X.: On local strong and classical solutions to the three-dimensional barotropic compressible Navier-Stokes equations with vacuum.(to appear) in Sci. China, Math. 10.1007/s11425-019-9755-3
Reference: [10] Métivier, G., Schochet, S.: The incompressible limit of the non-isentropic Euler equations.Arch. Ration. Mech. Anal. 158 (2001), 61-90. Zbl 0974.76072, MR 1834114, 10.1007/PL00004241
Reference: [11] Nowakowski, B., Ströhmer, G., Zajączkowski, W. M.: Large time existence of special strong solutions to MHD equations in cylindrical domains.J. Math. Fluid Mech. 20 (2018), 1013-1034. Zbl 1401.35253, MR 3841971, 10.1007/s00021-017-0353-2
Reference: [12] Nowakowski, B., Zajączkowski, W. M.: On global regular solutions to magnetohydrodynamics in axi-symmetric domains.Z. Angew. Math. Phys. 67 (2016), Article ID 142, 22 pages. Zbl 1358.35128, MR 3566925, 10.1007/s00033-016-0734-z
Reference: [13] Piasecki, T., Shibata, Y., Zatorska, E.: On strong dynamics of compressible two-component mixture flow.SIAM J. Math. Anal. 51 (2019), 2793-2849. Zbl 1419.76541, MR 3977107, 10.1137/17M1151134
Reference: [14] Vasseur, A., Wen, H., Yu, C.: Global weak solution to the viscous two-phase model with finite energy.J. Math. Pures Appl. (9) 125 (2019), 247-282. Zbl 1450.76033, MR 3944205, 10.1016/j.matpur.2018.06.019
Reference: [15] Wen, H., Zhu, L.: Global well-posedness and decay estimates of strong solutions to a two-phase model with magnetic field.J. Differ. Equations 264 (2018), 2377-2406. Zbl 1432.76298, MR 3721432, 10.1016/j.jde.2017.10.027
Reference: [16] Zhu, S.: On classical solutions of the compressible magnetohydrodynamic equations with vacuum.SIAM J. Math. Anal. 47 (2015), 2722-2753. Zbl 1325.35176, MR 3369066, 10.1137/14095265X
.

Files

Files Size Format View
AplMat_66-2021-4_7.pdf 264.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo