Title:
|
Circulant matrices with orthogonal rows and off-diagonal entries of absolute value $1$ (English) |
Author:
|
Contreras, Daniel Uzcátegui |
Author:
|
Goyeneche, Dardo |
Author:
|
Turek, Ondřej |
Author:
|
Václavíková, Zuzana |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 (print) |
ISSN:
|
2336-1298 (online) |
Volume:
|
29 |
Issue:
|
1 |
Year:
|
2021 |
Pages:
|
15-34 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is known that a real symmetric circulant matrix with diagonal entries $d\geq 0$, off-diagonal entries $\pm 1$ and orthogonal rows exists only of order $2d+2$ (and trivially of order $1$) [Turek and Goyeneche 2019]. In this paper we consider a complex Hermitian analogy of those matrices. That is, we study the existence and construction of Hermitian circulant matrices having orthogonal rows, diagonal entries $d\geq 0$ and any complex entries of absolute value $1$ off the diagonal. As a particular case, we consider matrices whose off-diagonal entries are 4th roots of unity; we prove that the order of any such matrix with $d$ different from an odd integer is $n=2d+2$. We also discuss a similar problem for symmetric circulant matrices defined over finite rings $\mathbb {Z}_m$. As an application of our results, we show a close connection to mutually unbiased bases, an important open problem in quantum information theory. (English) |
Keyword:
|
Circulant matrix |
Keyword:
|
orthogonal matrix |
Keyword:
|
Hadamard matrix |
Keyword:
|
mutually unbiased base |
MSC:
|
15B05 |
MSC:
|
15B10 |
MSC:
|
15B36 |
idZBL:
|
Zbl 07413355 |
idMR:
|
MR4251308 |
. |
Date available:
|
2021-07-09T12:23:21Z |
Last updated:
|
2021-11-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148989 |
. |
Reference:
|
[1] Backelin, J.: Square multiples $n$ give infinitely many cyclic $n$-roots.1989, Stockholms Universitet, Matematiska Institutionen, |
Reference:
|
[2] Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, and F.: A new proof for the existence of mutually unbiased bases.Algorithmica, 34, 4, 2002, 512-528, Springer, MR 1943521, 10.1007/s00453-002-0980-7 |
Reference:
|
[3] Tirkel, S.T. Blake and A.Z.: A construction for perfect periodic autocorrelation sequences.International Conference on Sequences and Their Applications, 2014, 104-108, Springer, MR 3297324 |
Reference:
|
[4] Chu, D.: Polyphase Codes With Good Periodic Correlation Properties.IEEE Transactions on information theory, 18, 4, 1972, 531-532, IEEE, 10.1109/TIT.1972.1054840 |
Reference:
|
[5] Craigen, R., Kharaghani, H.: On the nonexistence of Hermitian circulant complex Hadamard matrices.Australasian Journal of Combi natorics, 7, 1993, 225-228, MR 1211281 |
Reference:
|
[6] Craigen, R.: Trace, symmetry and orthogonality.Canadian Mathematical Bulletin, 37, 4, 1994, 461-467, Cambridge University Press, MR 1303672, 10.4153/CMB-1994-067-1 |
Reference:
|
[7] Faugère, J.-C.: Finding all the solutions of Cyclic 9 using Gr{ö}bner basis techniques.Lecture Notes Series on Computing -- Computer Mathematics: Proceedings of the Fifth Asian Symposium (ASCM 2001), 9, 2001, 1-12, World Scientific, MR 1877437 |
Reference:
|
[8] Farnett, E.C., Stevens, G.H.: Pulse Compression Radar.Radar Handbook, 2nd edition, 1990, 10.1-10.39, McGraw-Hill, New York, |
Reference:
|
[9] Hiranandani, G., Schlenker, J.-M.: Small circulant complex Hadamard matrices of Butson type.European Journal of Combinatorics, 51, 2016, 306-314, Elsevier, MR 3398859, 10.1016/j.ejc.2015.05.010 |
Reference:
|
[10] Heimiller, R.: Phase shift pulse codes with good periodic correlation properties.IRE Transactions on Information Theory, 7, 4, 1961, 254-257, IEEE, 10.1109/TIT.1961.1057655 |
Reference:
|
[11] Ivonovic, I.D.: Geometrical description of quantal state determination.Journal of Physics A: Mathematical and General, 14, 12, 1981, 3241-3245, IOP Publishing, MR 0639558, 10.1088/0305-4470/14/12/019 |
Reference:
|
[12] Ipatov, V.P.: Spread Spectrum and CDMA: Principles and Applications.2005, John Wiley & Sons, |
Reference:
|
[13] Liu, Y., Fan, P.: Modified Chu sequences with smaller alphabet size.Electronics Letters, 40, 10, 2004, 598-599, IET, 10.1049/el:20040437 |
Reference:
|
[14] Milewski, A.: Periodic sequences with optimal properties for channel estimation and fast start-up equalization.IBM Journal of Research and Development, 27, 5, 1983, 426-431, IBM, 10.1147/rd.275.0426 |
Reference:
|
[15] Mow, W.H.: A study of correlation of sequences.1993, PhD Thesis, Department of Information Engineering, The Chinese University of Hong Kong. |
Reference:
|
[16] Ryser, H.J.: Combinatorial mathematics.The Carus Mathematical Monographs, 14, 1963, The Mathematical Association of America, John Wiley and Sons, Inc., New York, MR 0150048 |
Reference:
|
[17] Scott, A.J.: Tight informationally complete quantum measurements.Journal of Physics A: Mathematical and General, 39, 43, 2006, 13507, IOP Publishing, MR 2269701, 10.1088/0305-4470/39/43/009 |
Reference:
|
[18] Turek, O., Goyeneche, D.: A generalization of circulant Hadamard and conference matrices.Linear Algebra and its Applications, 569, 2019, 241-265, Elsevier, MR 3905223, 10.1016/j.laa.2019.01.018 |
Reference:
|
[19] Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements.Annals of Physics, 191, 2, 1989, 363-381, Elsevier, MR 1003014, 10.1016/0003-4916(89)90322-9 |
Reference:
|
[20] Xu, L.: Phase coded waveform design for Sonar Sensor Network.Conference on Communications and Networking in China (CHINACOM), 2011 6th International ICST, 2011, 251-256, Springer, |
. |