Previous |  Up |  Next

Article

Title: Metric groups, unitary representations and continuous logic (English)
Author: Ivanov, Aleksander
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 1
Year: 2021
Pages: 35-48
Summary lang: English
.
Category: math
.
Summary: We describe how properties of metric groups and of unitary representations of metric groups can be presented in continuous logic. In particular we find $L_{\omega _1 \omega }$-axiomatization of amenability. We also show that in the case of locally compact groups some uniform version of the negation of Kazhdan's property (T) can be viewed as a union of first-order axiomatizable classes. We will see when these properties are preserved under taking elementary substructures. (English)
Keyword: Continuous logic
Keyword: metric groups
Keyword: unitary representations
Keyword: amenable groups.
MSC: 03C52
MSC: 22F05
idZBL: Zbl 07413356
idMR: MR4251310
.
Date available: 2021-07-09T12:24:43Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148990
.
Reference: [1] Bekka, B., Harpe, P. de la, Valette, P.: Kazhdan's Property (T).New Mathematical Monographs, 11, Cambridge University Press, Cambridge, 2008, MR 2415834
Reference: [2] Yaacov, I. Ben, Berenstein, A., Henson, W., Usvyatsov, A.: Model theory for metric structures.in: Model theory with Applications to Algebra and Analysis, v.2, Z. Chatzidakis, H.D. Macpherson, A. Pillay, A. Wilkie (eds.), London Math. Soc. Lecture Notes, v. 350, Cambridge University Press, 2008, 315 - 427, MR 2436146
Reference: [3] Yaacov, I. Ben, Iovino, J.: Model theoretic forcing in analysis.Annals of Pure and Appl. Logic, 158, 2009, 163 - 174, MR 2500090, 10.1016/j.apal.2007.10.011
Reference: [4] Bunina, E.I., Mikhalev, A.V.: Elementary properties of linear groups and related problems.J. Math. Sci. (N. Y.), 123, 2004, 3921 - 3985, MR 2096270, 10.1023/B:JOTH.0000036655.73484.a8
Reference: [5] Doucha, M.: Generic norms and metrics on countable abelian groups.Monatsh. Mathematik, 189, 2020, 51 - 74, MR 3948286, 10.1007/s00605-019-01277-7
Reference: [6] Ershov, M., Jaikin-Zapirain, A.: Property (T) for noncommutative universal lattices.Invent. Math., 179, 2010, 303 - 347, MR 2570119, 10.1007/s00222-009-0218-2
Reference: [7] Goldbring, I.: Enforceable operator algebras.Journal of the Institute of Mathematics of Jussieu, 2019, 1 - 33, MR 4205777
Reference: [8] Goldbring, I.: On the nonexistence of Folner sets.arXiv:1901.02445, 2019,
Reference: [9] Grigorchuk, R., Harpe, P. de la: Amenability and ergodic properties of topological groups: from Bogolyubov onwards.in: Groups, graphs and random walks, London Math. Soc. Lecture Note Ser., 436, Cambridge Univ. Press, Cambridge, 2017, 215 - 249, MR 3644011
Reference: [10] Hernandes, S., Hofmann, K.H., Morris, S.A.: The weights of closed subgroups of a locally compact subgroup.J. Group Theory, 15, 2012, 613 - 630, MR 2982605
Reference: [11] Ivanov, A.: Locally compact groups which are separably categorical structures.Arch. Math. Logic, 56, 2017, 67 - 78, MR 3598797, 10.1007/s00153-016-0516-5
Reference: [12] Ivanov, A.: Actions of metric groups and continuous logic.arXiv:1706.04157, 2017, MR 4251310
Reference: [13] Pestov, V.: Amenability versus property (T) for non locally compact topological groups.Trans. Amer. Math. Soc., 370, 2018, 7417 - 7436, MR 3841853, 10.1090/tran/7256
Reference: [14] Schneider, F.M., Thom, A.: On Folner sets in topological groups.Compositio Mathematica, 154, 2018, 1333 - 1361, MR 3809992, 10.1112/S0010437X1800708X
.

Files

Files Size Format View
ActaOstrav_29-2021-1_3.pdf 390.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo