Previous |  Up |  Next

Article

Title: Edge-sum distinguishing labeling (English)
Author: Bok, Jan
Author: Jedličková, Nikola
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 2
Year: 2021
Pages: 135-149
Summary lang: English
.
Category: math
.
Summary: We study edge-sum distinguishing labeling, a type of labeling recently introduced by Z. Tuza (2017) in context of labeling games. An ESD labeling of an $n$-vertex graph $G$ is an injective mapping of integers $1$ to $l$ to its vertices such that for every edge, the sum of the integers on its endpoints is unique. If $ l$ equals to $n$, we speak about a canonical ESD labeling. We focus primarily on structural properties of this labeling and show for several classes of graphs if they have or do not have a canonical ESD labeling. As an application we show some implications of these results for games based on ESD labeling. We also observe that ESD labeling is closely connected to the well-known notion of magic and antimagic labelings, to the Sidon sequences and to harmonious labelings. (English)
Keyword: graph theory
Keyword: graph labeling
Keyword: games on graphs
MSC: 05C78
idZBL: Zbl 07396214
idMR: MR4303573
DOI: 10.14712/1213-7243.2021.010
.
Date available: 2021-07-28T08:31:36Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/149006
.
Reference: [1] Bača M., Lin Y., Miller M., Youssef M. Z.: Edge-antimagic graphs.Discrete Math. 307 (2007), no. 11–12, 1232–1244. MR 2311093, 10.1016/j.disc.2005.10.038
Reference: [2] Gallian J. A.: A dynamic survey of graph labeling.Electron. J. Combin. 5 (1998), Dynamic Survay 6, 43 pages. MR 1668059
Reference: [3] Graham R. L., Sloane N. J. A.: On additive bases and harmonious graphs.SIAM J. Algebraic Discrete Methods 1 (1980), no. 4, 382–404. MR 0593849, 10.1137/0601045
Reference: [4] Guy R. K.: Unsolved Problems in Number Theory.Problem Books in Mathematics, Springer, New York, 2004. Zbl 1058.11001, MR 2076335
Reference: [5] Hale W. K.: Frequency assignment: Theory and applications.Proceedings of the IEEE 68 (1980), no. 12, 1497–1514.
Reference: [6] Jha P. K.: Optimal ${L}(2, 1)$-labeling of Cartesian products of cycles, with an application to independent domination.IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 47 (2000), no. 10, 1531–1534. MR 1827298
Reference: [7] Kotzig A., Rosa A.: Magic valuations of finite graphs.Canad. Math. Bull. 13 (1970), no. 4, 451–461. MR 0272664, 10.4153/CMB-1970-084-1
Reference: [8] Kotzig A., Rosa A.: Magic Valuations of Complete Graphs.Centre de Recherches Mathématiques, Université de Montréal, 1972. MR 0272664
Reference: [9] O'Bryant K.: A complete annotated bibliography of work related to Sidon sequences.Electronic Journal of Combinatorics 1000 (2004), #DS11, 39 pages. 10.37236/32
Reference: [10] Rahmawati S., Sugeng K. A., Silaban D. R., Miller M., Bača M.: Construction of new larger $(a,d)$-edge antimagic vertex graphs by using adjacency matrices.Australas. J. Combin. 56 (2013), 257–272. MR 3097727
Reference: [11] Rosa A.: On certain valuations of the vertices of a graph.Theory of Graphs, Internat. Symp., Rome, 1966, Gordon and Breach, New York, 1967, 349–355. MR 0223271
Reference: [12] Sidon S.: Ein Satz über trigonometrische Polynome und seine Anwendung in der Theorie der Fourier-Reihen.Math. Ann. 106 (1932), no. 1, 536–539 (German). MR 1512772, 10.1007/BF01455900
Reference: [13] Simanjuntak R., Bertault F., Miller M.: Two new $(a,d)$-antimagic graph labelings.Proc. of Eleventh Australasian Workshop on Combinatorial Algorithms 11 (2000), pages 179–189.
Reference: [14] Tuza Z.: Graph labeling games.Electron. Notes Discrete Math. 60 Elsevier Sci. B. V., Amsterdam (2017), 61–68. MR 3667978
Reference: [15] van den Heuvel J., Leese R. A., Shepherd M. A.: Graph labeling and radio channel assignment.J. Graph Theory 29 (1998), no. 4, 263–283. MR 1653829, 10.1002/(SICI)1097-0118(199812)29:4<263::AID-JGT5>3.0.CO;2-V
Reference: [16] Wallis W. D.: Magic Graphs.Birkhäuser Boston, Springer Science & Business Media, 2001. MR 1874683
Reference: [17] West D. B.: Introduction to Graph Theory.Prentice Hall Upper Saddle River, University of Illinois, Urbana-Champaign, 2001. Zbl 1121.05304, MR 1367739
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-2_1.pdf 558.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo