Title:
|
Harmonic deformability of planar curves (English) |
Author:
|
Symeonidis, Eleutherius |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
62 |
Issue:
|
2 |
Year:
|
2021 |
Pages:
|
159-167 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study the formerly established concept of deformation of a planar curve and clarify its applicability and range. We present several applications on classical curves. (English) |
Keyword:
|
harmonic function |
Keyword:
|
harmonic deformation |
Keyword:
|
harmonic family |
Keyword:
|
curve |
Keyword:
|
mean value property |
MSC:
|
31A05 |
MSC:
|
31A10 |
MSC:
|
31A35 |
idZBL:
|
Zbl 07396216 |
idMR:
|
MR4303575 |
DOI:
|
10.14712/1213-7243.2021.016 |
. |
Date available:
|
2021-07-28T08:33:16Z |
Last updated:
|
2023-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149009 |
. |
Reference:
|
[1] Khavinson D., Lundberg E.: Linear Holomorphic Partial Differential Equations and Classical Potential Theory.Mathematical Surveys and Monographs, 232, American Mathematical Society, Providence, 2018. MR 3821527 |
Reference:
|
[2] Symeonidis E.: Harmonic deformation of planar curves.Int. J. Math. Math. Sci. 2011 (2011), Art. ID 141209, 10 pages. MR 2771222 |
Reference:
|
[3] Symeonidis E.: Harmonic families of planar curves.Potential Theory and Its Related Fields, RIMS Kôkyûroku Bessatsu, B43, Res. Inst. Math. Sci. (RIMS), Kyoto, 2013, pages 171–181. MR 3220459 |
. |