Previous |  Up |  Next

Article

Title: Generalized prime $D$-filters of distributive lattices (English)
Author: Phaneendra Kumar, A.P.
Author: Sambasiva Rao, M.
Author: Sobhan Babu, K.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 57
Issue: 3
Year: 2021
Pages: 157-174
Summary lang: English
.
Category: math
.
Summary: The concept of generalized prime $D$-filters is introduced in distributive lattices. Generalized prime $D$-filters are characterized in terms of principal filters and ideals. The notion of generalized minimal prime $D$-filters is introduced in distributive lattices and properties of minimal prime $D$-filters are then studied with respect to congruences. Some topological properties of the space of all prime $D$-filters of a distributive lattice are also studied. (English)
Keyword: dense element
Keyword: filter
Keyword: $D$-filter
Keyword: prime $D$-filter
Keyword: congruence
Keyword: Hausdorff space
MSC: 06D99
idZBL: Zbl 07396181
idMR: MR4306175
DOI: 10.5817/AM2021-3-157
.
Date available: 2021-07-30T12:28:53Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149019
.
Reference: [1] Birkhoff, G.: Lattice theory.Amer. Math. Soc. Colloq. XXV, Providence, USA, 1967. Zbl 0153.02501, MR 0227053
Reference: [2] Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra.Springer Verlag, 1981. Zbl 0478.08001, MR 0648287
Reference: [3] Cornish, W.H.: Normal lattices.J. Aust. Math. Soc. 14 (1972), 200–215. MR 0313148, 10.1017/S1446788700010041
Reference: [4] Cornish, W.H.: Annulets and $\alpha $-ideals in distributive lattices.J. Aust. Math. Soc. 15 (1973), 70–77. MR 0344170, 10.1017/S1446788700012775
Reference: [5] Cornish, W.H.: Quasicomplemented lattices.Comment. Math. Univ. Carolin. 15 (3) (1974), 501–511. MR 0354468
Reference: [6] Katrinak, T.: Remarks on Stone lattices, I.Math.-Fyz.Časopis 16 (1966), 128–142. MR 0200215
Reference: [7] Kist, J.: Minimal prime ideals in commutative semigroups.Proc. London Math. Soc. Sec. B 13 (1963), 31–50. MR 0143837, 10.1112/plms/s3-13.1.31
Reference: [8] Mandelker, M.: Relative annihilators in lattices.Duke Math. J. 37 (1970), 377–386. Zbl 0206.29701, MR 0256951, 10.1215/S0012-7094-70-03748-8
Reference: [9] Phaneendra Kumar, A.P., Sambasiva Rao, M., Sobhan Babu, K.: Filters of distributive lattices generated by dense elements.to appear in Palestine J. Math.
Reference: [10] Sambasiva Rao, M.: $e$-filters of MS-algebras.Acta Math. Sci. 33B (3) (2013), 738–746. MR 3048173, 10.1016/S0252-9602(13)60034-X
Reference: [11] Sambasiva Rao, M., Badawy, A.: $\mu $-filters of distributive lattices.Southeast Asian Bull. Math. 40 (2016), 251–264. MR 3496685
Reference: [12] Speed, T.P.: Some remarks on a class of distributive lattices.J. Aust. Math. Soc. 9 (1969), 289–296. MR 0246800, 10.1017/S1446788700007205
.

Files

Files Size Format View
ArchMathRetro_057-2021-3_3.pdf 462.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo