Previous |  Up |  Next

Article

Title: Algebraic restrictions on geometric realizations of curvature models (English)
Author: Dunn, Corey
Author: Smith, Zoë
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 57
Issue: 3
Year: 2021
Pages: 175-194
Summary lang: English
.
Category: math
.
Summary: We generalize a previous result concerning the geometric realizability of model spaces as curvature homogeneous spaces, and investigate applications of this approach. We find algebraic restrictions to realize a model space as a curvature homogeneous space up to any order, and study the implications of geometrically realizing a model space as a locally symmetric space. We also present algebraic restrictions to realize a curvature model as a homothety curvature homogeneous space up to even orders, and demonstrate that for certain model spaces and realizations, homothety curvature homogeneity implies curvature homogeneity. (English)
Keyword: curvature model
Keyword: curvature homogeneous
Keyword: homothethy curvature homogeneous
MSC: 15A69
MSC: 53B15
MSC: 53B30
idZBL: Zbl 07396182
idMR: MR4306176
DOI: 10.5817/AM2021-3-175
.
Date available: 2021-07-30T12:30:20Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149020
.
Reference: [1] Belger, M., Kowalski, O.: Riemannian Metrics with the Prescribed Curvature Tensor and all Its Covariant Derivatives at One Point.Math. Nachr. 168 (1994), no. 1, 209–225. MR 1282640
Reference: [2] Cahen, M., Leroy, J., Parker, M., Tricerri, F., Vanhecke, L.: Lorentz manifolds modeled on a Lorentz symmetric space.J. Geom. Phys. 7 (1990), 571–581. MR 1131913, 10.1016/0393-0440(90)90007-P
Reference: [3] Calvaruso, G.: Homogeneous structures on three-dimensional Lorentzian manifolds.J. Geom. Phys. 57 (2007), 1279–1291. Zbl 1112.53051, MR 2287304, 10.1016/j.geomphys.2006.10.005
Reference: [4] Dunn, C., Luna, A., Sbiti, S.: A common generalization of curvature homogeneity theories.J. Geom. 111 (1) (2020), 17 pp. MR 4076679, 10.1007/s00022-020-0528-5
Reference: [5] Dunn, C., McDonald, C.: Singer invariants and various types of curvature homogeneity.Ann. Global Anal. Geom. 45 (2014), no. 4, 303–317. MR 3180951, 10.1007/s10455-013-9403-z
Reference: [6] García-Río, E., Gilkey, P., Nikčević, S.: Homothety curvature homogeneity and homothety homogeneity.Ann. Global Anal. Geom. 48 (2015), no. 2, 149–170. MR 3376877, 10.1007/s10455-015-9462-4
Reference: [7] Gilkey, P.: Relating algebraic properties of the curvature tensor to geometry.Novi Sad J. Math. 29 (1999), no. 3, 109–119. MR 1770990
Reference: [8] Gilkey, P.: Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor.World Scientific, 2001. MR 1877530
Reference: [9] Gilkey, P.: The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds.Imperial College Press, 2007. Zbl 1128.53041, MR 2351705
Reference: [10] Gray, A.: Einstein-like manifolds which are not Einstein.Geom. Dedicata 7 (1978), 259–280. DOI: http://dx.doi.org/https://doi.org/10.1007/BF00151525 Zbl 0378.53018, MR 0505561, 10.1007/BF00151525
Reference: [11] Klinger, R.: A basis that reduces to zero as many curvature components as possible.Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 61 (1991), 243–248. MR 1138290
Reference: [12] Kowalski, O., Prüfer, F.: Curvature tensors in dimension four which do not belong to any curvature homogeneous space.Arch. Math. (Brno) 30 (1994), no. 1, 45–57. MR 1282112
Reference: [13] Kowalski, O., Vanžurová, A.: On curvature homogeneous spaces of type (1,3).Math. Nachr. 284 (2011), no. 17–18, 2127–2132. MR 2859752, 10.1002/mana.201000008
Reference: [14] Kowalski, O., Vanžurová, A.: On a generalization of curvature homogeneous spaces.Results Math. 63 (2013), 129–134. MR 3009676, 10.1007/s00025-011-0177-y
Reference: [15] Lee, J.: Riemannian Manifolds: An Introduction to Curvature.Springer-Verlag New York, Inc., 1997. MR 1468735
Reference: [16] Singer, I.M.: Infinitesimally homogeneous spaces.Commun. Pure Appl. Math 13 (1960), 685–697. Zbl 0171.42503, MR 0131248, 10.1002/cpa.3160130408
Reference: [17] Tricerri, F., Vanhecke, L.: Variétés Riemanniennes dont le tenseur de courbure est celui d’un espace symétrique Riemannien irréductible.C.R. Acad. Sci., Paris, Sér I (1986), no. 302, 233–235. MR 0832051
Reference: [18] Tsankov, Y.: A characterization of $n$-dimensional hypersurfaces in $\mathbb{R}^{n+1}$ with commuting curvature operators.Banach Center Publ. 69 (2005), 205–209. MR 2189568, 10.4064/bc69-0-16
.

Files

Files Size Format View
ArchMathRetro_057-2021-3_4.pdf 535.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo