Previous |  Up |  Next

Article

Title: A depth-based modification of the k-nearest neighbour method (English)
Author: Vencálek, Ondřej
Author: Hlubinka, Daniel
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 1
Year: 2021
Pages: 15-37
Summary lang: English
.
Category: math
.
Summary: We propose a new nonparametric procedure to solve the problem of classifying objects represented by $d$-dimensional vectors into $K \geq 2$ groups. The newly proposed classifier was inspired by the $k$ nearest neighbour (kNN) method. It is based on the idea of a depth-based distributional neighbourhood and is called $k$ nearest depth neighbours (kNDN) classifier. The kNDN classifier has several desirable properties: in contrast to the classical kNN, it can utilize global properties of the considered distributions (symmetry). In contrast to the maximal depth classifier and related classifiers, it does not have problems with classification when the considered distributions differ in dispersion or have unequal priors. The kNDN classifier is compared to several depth-based classifiers as well as the classical kNN method in a simulation study. According to the average misclassification rates, it is comparable to the best current depth-based classifiers. (English)
Keyword: Bayes classifier
Keyword: data depth
Keyword: k nearest depth neighbours
Keyword: nonparametric
MSC: 62G30
MSC: 62H30
idZBL: Zbl 07396253
idMR: MR4231854
DOI: 10.14736/kyb-2021-1-0015
.
Date available: 2021-07-30T12:45:31Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149024
.
Reference: [1] Agostinelli, C., Romanazzi, M.: Local depth..J. Statist. Plann. Inference 141 (2011), 817-830. MR 2732952,
Reference: [2] Barber, C. B., Dobkin, D. P., Huhdanpaa, H.: The quickhull algorithm for convex hulls..ACM Trans. Math. Software (TOMS) 22 (1996), 4, 469-483. MR 1428265,
Reference: [3] Christmann, A., Rousseeuw, P. J.: Measuring overlap in binary regression..Comput. Statist. Data Analysis 37 (2001), 65-75. MR 1862480,
Reference: [4] Cox, L. H., Johnson, M. M., Kafadar, K.: Exposition of statistical graphics technology..In: ASA Proc Stat. Comp Section 1982, pp. 55-56.
Reference: [5] Dutta, S., Ghosh, A. K.: On classification based on Lp depth with an adaptive choice of p..Preprint, 2011.
Reference: [6] Dutta, S., Ghosh, A. K.: On robust classification using projection depth..Ann. Inst.Statist. Math. 64 (2012), 3, 657-676. MR 2880873,
Reference: [7] Dutta, S., Ghosh, A. K., Chaudhuri, P.: Some intriguing properties of Tukey's half-space depth..Bernoulli 17 (2011), 4, 1420-1434. Zbl 1229.62063, MR 2854779,
Reference: [8] Fix, E., Hodges, J. L.: Discriminatory Analysis: Nonparametric Discrimination: Consistency Properties..Technical Report 4, Randolph Field, Texas: USAF School of Aviation Medicine, 1951.
Reference: [9] Fraiman, R., Liu, R. Y., Meloche, J.: Multivariate density estimation by probing depth..Lecture Notes-Monograph Series 1997, pp. 415-430. MR 1833602, 10.1214/lnms/1215454155
Reference: [10] Ghosh, A. K., Chaudhuri, P.: On maximum depth and related classifiers..Scand. J. Statist. 32 (2005), 327-350. MR 2188677,
Reference: [11] Ghosh, A. K., Chaudhuri, P.: On data depth and distribution-free discriminant analysis using separating surfaces..Bernoulli 11 (2005), 1, 1-27. MR 2121452,
Reference: [12] Habel, K., Grasman, R., Gramacy, R. B., Mozharovskyi, P., Sterratt, D. C.: Geometry: Mesh Generation and Surface Tessellation. R package version 0.4.5..
Reference: [13] Hlubinka, D., Kotík, L., Vencálek, O.: Weighted data depth..Kybernetika 46 (2010), 1, 125-148. MR 2666899
Reference: [14] Hubert, M., Veeken, S. van der: Fast and robust classifiers adjusted for skewness..In: COMPSTAT 2010: Proceedings in Computational Statistics: 19th Symposium held in Paris 2010 (Y. Lechevallier and G. Saporta, eds.), Springer, Heidelberg 2010, pp. 1135-1142.
Reference: [15] Jörnsten, R.: Clustering and classification based on the $L_1$ data depth..J. Multivar. Anal. 90 (2004), 67-89. MR 2064937, 10.1016/j.jmva.2004.02.013
Reference: [16] Kotík, L., Hlubinka, D.: A weighted localization of halfspace depth and its properties..J. Multivar. Anal. 157 (2017), 53-69. MR 3641736,
Reference: [17] Kosiorowski, D., Zawadzki, Z.: DepthProc An R Package for Robust..Exploration of Multidimensional Economic Phenomena, 2020.
Reference: [18] Lange, T., Mosler, K., Mozharovskyi, P.: Fast nonparametric classification based on data depth..Statist. Papers 55 (2014), 1, 49-69. MR 3152767, 10.1007/s00362-012-0488-4
Reference: [19] Li, J., Cuesta-Albertos, J. A., Liu, R. Y.: DD-classifier: Nonparametric classification procedure based on DD-plot..J. Amer. Statist. Assoc. 107 (2012), 498, 737-753. MR 2980081,
Reference: [20] Liu, R. Y.: On a notion of data depth based on random simplices..Ann. Statist. 18 (1990), 1, 405-414. MR 1041400,
Reference: [21] Liu, R. Y., Parelius, J. M., Singh, K.: Multivariate analysis by data depth: Descriptive statistics, graphics and inference (with discussion)..Ann. Statist. 27 (1999), 783-858. MR 1724033,
Reference: [22] Mardia, K., Kent, J., Bibby, J.: Multivariate Analysis..Academic Press, 1979. MR 0560319
Reference: [23] Paindaveine, D., Bever, G. Van: From depth to local depth: a focus on centrality..J. Amer. Statist. Assoc. 105 (2013), 1105-1119. MR 3174687, 10.1080/01621459.2013.813390
Reference: [24] Paindaveine, D., Bever, G. Van: Nonparametrically consistent depth-based classifiers..Bernoulli 21 (2015), 1, 62-82. MR 3322313,
Reference: [25] Pokotylo, O., Mozharovskyi, P., Dyckerhoff, R.: Depth and depth-based classification with R package ddalpha..J. Statist. Software 91 (2019), 5, 1-46. 10.18637/jss.v091.i05
Reference: [26] Serfling, R.: Depth functions in nonparametric multivariate inference..In: Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications (R. Y. Liu, R. Serfling, and D. L. Souvaine, eds.), American Mathematical Society, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 7, New York 2006, pp. 1-16. MR 2343109
Reference: [27] Vencalek, O.: $k$-Depth-nearest neighbour method and its performance on skew-normal distributons..Acta Univ. Palacki Olomouc., Fac. Rer. Nat., Mathematica 52 (2013), 2, pp. 121-129. MR 3202385
Reference: [28] Yeh, I. C., Yang, K. J., Ting, T. M.: Knowledge discovery on RFM model using Bernoulli sequence..Expert Systems Appl. 36 (2009), 5866-5871.
Reference: [29] Zakai, A., Ritov, Y.: Consistency and localizability..J. Machine Learning Res. 10 (2009), 827-856. MR 2505136
Reference: [30] Zuo, Y., Serfling, R.: General notion of statistical depth function..Ann. Statist. 28 (2000), 461-482. MR 1790005,
Reference: [31] Zuo, Y., Serfling, R.: Structural properties and convergence results for contours of sample statistical depth functions..Ann. Statist. 28 (2000) 2, 483-499. MR 1790006,
.

Files

Files Size Format View
Kybernetika_57-2021-1_2.pdf 936.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo