Title:
|
Robust observer-based finite-time $H_{\infty }$ control designs for discrete nonlinear systems with time-varying delay (English) |
Author:
|
Dong, Yali |
Author:
|
Wang, Huimin |
Author:
|
Deng, Mengxiao |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
57 |
Issue:
|
1 |
Year:
|
2021 |
Pages:
|
102-117 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper investigates the problem of observer-based finite-time $H_{\infty}$ control for the uncertain discrete-time systems with nonlinear perturbations and time-varying delay. The Luenberger observer is designed to measure the system state. The observer-based controller is constructed. By constructing an appropriated Lyapunov-.Krasovskii functional, sufficient conditions are derived to ensure the resulting closed-loop system is $H_{\infty}$ finite-time bounded via observer-based control. The observer-based controller for the finite-time $H_{\infty}$ control problem is developed. Finally, a numerical example illustrates the efficiency of proposed methods. (English) |
Keyword:
|
observer-based control |
Keyword:
|
$H_{\infty }$ finite-time boundedness |
Keyword:
|
Lyapunov--Krasovskii functional |
Keyword:
|
discrete-time systems |
Keyword:
|
time-varying delay |
MSC:
|
93B35 |
MSC:
|
93B52 |
MSC:
|
93C10 |
MSC:
|
93D09 |
MSC:
|
93D15 |
idZBL:
|
Zbl 07396258 |
idMR:
|
MR4231859 |
DOI:
|
10.14736/kyb-2021-1-0102 |
. |
Date available:
|
2021-07-30T12:53:00Z |
Last updated:
|
2021-11-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149029 |
. |
Reference:
|
[1] Amato, F., Ambrosino, R., Ariola, M., Tommasi, G. De, Pironti, A.: On the finite-time boundedness of linear systems..Automatica 107 (2019), 454-466. MR 3979026, |
Reference:
|
[2] Amato, F., Darouach, M., Tommasi, G. De: Finite-time stabilizability, detectability, and dynamic output feedback finite-time stabilization of linear systems..IEEE Trans. Automat. Control 62 (2017), 12, 6521-6528. MR 3743535, |
Reference:
|
[3] Ahmad, S., Rehan, M.: On observer-based control of one-sided Lipschitz systems..J. Frankl. Inst. 353 (2016), 4, 903-916. MR 3463288, |
Reference:
|
[4] Amato, F., Arioial, M., Dorato, P.: Finite-time control of linear system subject to parametric uncertainties and disturbances..Automatica 37 (2001), 1459-1463. |
Reference:
|
[5] Cheng, J., Zhu, H., Zhong, S. M., Zeng, Y., Hou, L. Y.: Finite-time $H_{\infty}$ filtering for a class of discrete-time Markovian jump systems with partly unknown transition probabilities..Int. J. Adapt. Control Signal Process. 28 (2014), 1024-1042. MR 3269858, |
Reference:
|
[6] Dong, Y., Chen, L., Mei, S.: Observer design for neutral-type neural networks with discrete and distributed time-varying delays..Int. J. Adapt. Control Signal Process. 33 (2019), 1, 527-544. MR 3925377, |
Reference:
|
[7] Dong, Y., Li, T., Mei, S.: Exponential stabilization and $L_{2}$-gain for uncertain switched nonlinear systems with interval time-varying delay..Math. Meth. Appl. Sci. 39 (2016), 3836-3854. MR 3529387, |
Reference:
|
[8] Dong, Y., Liang, S., Wang, H.: Robust stability and $H_{\infty}$ control for nonlinear discrete-time switched systems with interval time-varying delay..Math. Meth. Appl. Sci. 42 (2019), 1999-2015. MR 3937647, |
Reference:
|
[9] Dong, Y., Liu, W., Li, T., Liang, S.: Finite-time boundedness analysis and $H_{\infty}$ control for switched neutral systems with mixed time-varying delays..J. Frankl. Inst. 354 (2017), 787-811. MR 3591977, |
Reference:
|
[10] Dong, Y., Zhang, Y., Zhang, X.: Design of observer-based feedback control for a class of discrete-time nonlinear systems with time-delay..Appl. Comput. Math., 13 (2014), 1, 107-121. MR 3307942 |
Reference:
|
[11] Dorato, P.: Short time stability in linear time-varying system..In: Proc. IRE International Convention Record. Part 4, New York 1961, pp. 83-87. |
Reference:
|
[12] Karafyllis, I.: Finite-time global stabilization by means of time-varying distributed delay feedback..SIAM J. Control Optim. 45 (2006), 1, 320-342. MR 2225308, |
Reference:
|
[13] Lin, X., Du, H., Li, S.: Finite-time boundedness and $L_2$ gain analysis for switched delay systems with norm-bounded disturbance..Appl. Math. Comput. 217 (2011), 12, 5982-5993. MR 2770219, |
Reference:
|
[14] Ma, Y. C., Fu, L., Jing, Y. H., Zhang, Q. L.: Finite-time $H_{\infty}$ control for a class of discrete-time switched singular time-delay systems subject to actuator saturation..Appl. Math. Comput. 261 (2015), 264-283. MR 3345277, |
Reference:
|
[15] Nguyen, C. M., Pathirana, P. N., Trinh, H.: Robust observer-based control designs for discrete nonlinear systems with disturbances..Europ. J. Control 44 (2018), 65-72. MR 3907454, |
Reference:
|
[16] Nguyen, C. M., Pathirana, P. N., Trinh, H.: Robust observer design for uncertain one-sided Lipschitz systems with disturbances..Int. J. Robust Nonlinear Control 28 (2018), 1366-1380. MR 3756748, |
Reference:
|
[17] Nguyen, M. C., Trinh, H.: Observer design for one-sided Lipschitz discrete-time systems subject to delays and unknown inputs..SIAM J. Control Optim 54 (2016), 3, 1585-1601. MR 3509998, |
Reference:
|
[18] Song, J., He, S.: Robust finite-time $H_{\infty}$ control for one-sided Lipschitz nonlinear systems via state feedback and output feedback..J. Frankl. Inst. 352 (2015), 8, 3250-3266. MR 3369926, |
Reference:
|
[19] Stojanovic, S. B.: Robust finite-time stability of discrete time systems with interval time-varying delay and nonlinear perturbations..J. Frankl. Inst. 354 (2017), 4549-4572. MR 3655782, |
Reference:
|
[20] Zhang, W., Su, H., Zhu, F., Azar, G.: Unknown input observer design for one-sided Lipschitz nonlinear systems..Nonlinear Dyn. 79 (2015), 2, 1469-1479. MR 3302781, |
Reference:
|
[21] Zhang, Z., Zhang, Z., Zhang, H.: Finite-time stability analysis and stabilization for uncertain continuous-time system with time-varying delay..J. Frankl. Inst. 352 (2015), 1296-1317. MR 3306527, |
Reference:
|
[22] Zhang, Z., Zhang, Z., Zhang, H., Zheng, B., Karimi, H. R.: Finite-time stability analysis and stabilization for linear discrete-time system with time-varying delay..J. Frankl. Inst. 351 (2014), 3457-3476. MR 3201042, |
. |