Previous |  Up |  Next

Article

Title: Stability of perturbed delay homogeneous systems depending on a parameter (English)
Author: Ben Rzig, Ines
Author: Kharrat, Thouraya
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 1
Year: 2021
Pages: 141-159
Summary lang: English
.
Category: math
.
Summary: In this paper, we analyze the stability of homogeneous delay systems based on the Lyapunov Razumikhin function in the presence of a varying parameter. In addition, we show the stability of perturbed time delay systems when the nominal part is homogeneous. (English)
Keyword: nonlinear homogeneous system
Keyword: varying delay
Keyword: stability
Keyword: Lyapunov Razumikhin function
MSC: 34D20
idZBL: Zbl 07396260
idMR: MR4231861
DOI: 10.14736/kyb-2021-1-0141
.
Date available: 2021-07-30T12:56:13Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149031
.
Reference: [1] Aleksandrov, A. Yu., Zhabko, A. .P.: Delay-independent stability of homogeneous systems..Appl. Math. Lett. 34 (2014), 43-50. MR 3212227,
Reference: [2] Bacciotti, A., Rosier, L.: Lyapunov Functions and Stability in Control Theory..Springer 2005. MR 2146587
Reference: [3] Cao, Y., Samidurai, R., Sriraman, R.: Stability and sissipativity analysis for neutral type stochastic Markovian jump static neural networks with time delays..J. Artif. Intell. Soft Comput. Res. 9 (2019), 3, 189-204.
Reference: [4] Efimov, D., Perruquetti, W., Richard, J. P.: Development of homogeneity concept for time-delay systems..SIAM J. Control Optim. 52 (2014), 3, 1547-1566. MR 3200418,
Reference: [5] Gu, K., Kharitonov, V. L., Chen, J.: Stability of Time-Delay Systems..Birkhauser, Boston 2003. MR 3075002
Reference: [6] Hale, J. K., Verduyn, L. S. M.: Introduction to Functional-Differential Equations..Springer-Verlag, New York 1993. MR 1243878
Reference: [7] Hermes, H.: Asymptotically stabilizing feedback controls..J. Different. Equations 92 (1991), 1, 76-89. MR 1113589,
Reference: [8] Hermes, H.: Homogeneous coordinates and continuous asymptotically stabilizing feedback controls..Differential Equations Stability Control 109 (1991), 1, 249-260. MR 1096761
Reference: [9] Hu, H., Yuan, X., Huang, L., Huang, C.: Global dynamics of an SIRS model with demographics and transfer from ifectious to susceptible on heterogeneous networks..Math. Biosciences Engrg. 16 (2019), 5729-5749. MR 4032648,
Reference: [10] Huang, C., Cao, J., Wen, F., Yang, X.: Stability Analysis of SIR Model with Distributed Delay on Complex Networks..Plo One 08 (2016), 11, e0158813.
Reference: [11] Huang, C., Qiao, Y., Huang, L., Agarwal, R.: Dynamical behaviors of a Food-Chain model with stage structure and time delays..Adv. Difference Equations 186 (2018), 12. MR 3803384,
Reference: [12] Huang, C., Yang, Z., Yi, T., Zou, X.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities..J. Differential Equations 256 (2014), 2101-2114. MR 3160438,
Reference: [13] Huang, C., Zhang, H., Cao, J., Hu, H.: Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator..Int. J. Bifurcation Chaos 29 (2019), 7, 1950091-23. MR 3981039,
Reference: [14] Kawski, M.: Homogeneous stabilizing feedback laws..Control Theory Advanced Technol. 6 (1990), 4, 497-516. MR 1092775
Reference: [15] Khalil, K. H.: Nonlinear Systems. (Third edition).Prentice-Hall, Upper Saddle River, NJ 2002.
Reference: [16] Krasovskii, N. N.: Stability of Motion. Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay..Stanford University Press, Stanford 1963. MR 0147744
Reference: [17] Lin, Y., Sontag, E. D., Wang, Y.: Input to State Stabilizability for Parametrized Families of Systems..Int. J. Robust Nonlinear Control 5 (1995), 3, 187-205. MR 1329624,
Reference: [18] Long, X., S.Gong: New results on stability of {n}icholson's blowflies {e}quation with multiple pairs of {t}ime-{v}arying delays..Appl. Math. Lett. 100 (2019), 9, 106027. MR 4008616,
Reference: [19] Massera, J. L.: Contributions to stability {t}heory..Ann. Math.Second Series 64 (1958), 7, 182-206. MR 0079179, 10.2307/1969955
Reference: [20] Raja, R., Karthik Raja, U. , Samidurai, R., Leelamani, A.: Dissipativity of discrete-time {BAM} stochastic neural networks with Markovian switching and impulses..J. Franklin Inst. 350 (2013), 10, 3217-3247. MR 3123415,
Reference: [21] Razumikhin, B. S.: The application of Lyapunov's method to problems in the stability of systems with delay..Automat. Remote Control 21 (1960), 515-520. MR 0118639
Reference: [22] Rosier, L.: Homogeneous {L}yapunov function for {h}omogeneous {c}ontinuous {v}ector fields..Systems Control Lett. 19 (1992), 6, 467-473. MR 1195304,
Reference: [23] Sepulchre, R., Aeyels, D.: Homogeneous Lyapunov functions and necessary conditions for stabilization..Math. Control Signals Systems 9 (1996), 3, 34-58. MR 1410047,
Reference: [24] Zubov, V. I.: Mathematical Methods for the Study of Automatic Control Systems..Pergamon Press, New York - Oxford - London - Paris; Jerusalem Academic Press, Jerusalem 1962. MR 0151695
.

Files

Files Size Format View
Kybernetika_57-2021-1_9.pdf 484.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo