Title:
|
Stability of perturbed delay homogeneous systems depending on a parameter (English) |
Author:
|
Ben Rzig, Ines |
Author:
|
Kharrat, Thouraya |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
57 |
Issue:
|
1 |
Year:
|
2021 |
Pages:
|
141-159 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we analyze the stability of homogeneous delay systems based on the Lyapunov Razumikhin function in the presence of a varying parameter. In addition, we show the stability of perturbed time delay systems when the nominal part is homogeneous. (English) |
Keyword:
|
nonlinear homogeneous system |
Keyword:
|
varying delay |
Keyword:
|
stability |
Keyword:
|
Lyapunov Razumikhin function |
MSC:
|
34D20 |
idZBL:
|
Zbl 07396260 |
idMR:
|
MR4231861 |
DOI:
|
10.14736/kyb-2021-1-0141 |
. |
Date available:
|
2021-07-30T12:56:13Z |
Last updated:
|
2021-11-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149031 |
. |
Reference:
|
[1] Aleksandrov, A. Yu., Zhabko, A. .P.: Delay-independent stability of homogeneous systems..Appl. Math. Lett. 34 (2014), 43-50. MR 3212227, |
Reference:
|
[2] Bacciotti, A., Rosier, L.: Lyapunov Functions and Stability in Control Theory..Springer 2005. MR 2146587 |
Reference:
|
[3] Cao, Y., Samidurai, R., Sriraman, R.: Stability and sissipativity analysis for neutral type stochastic Markovian jump static neural networks with time delays..J. Artif. Intell. Soft Comput. Res. 9 (2019), 3, 189-204. |
Reference:
|
[4] Efimov, D., Perruquetti, W., Richard, J. P.: Development of homogeneity concept for time-delay systems..SIAM J. Control Optim. 52 (2014), 3, 1547-1566. MR 3200418, |
Reference:
|
[5] Gu, K., Kharitonov, V. L., Chen, J.: Stability of Time-Delay Systems..Birkhauser, Boston 2003. MR 3075002 |
Reference:
|
[6] Hale, J. K., Verduyn, L. S. M.: Introduction to Functional-Differential Equations..Springer-Verlag, New York 1993. MR 1243878 |
Reference:
|
[7] Hermes, H.: Asymptotically stabilizing feedback controls..J. Different. Equations 92 (1991), 1, 76-89. MR 1113589, |
Reference:
|
[8] Hermes, H.: Homogeneous coordinates and continuous asymptotically stabilizing feedback controls..Differential Equations Stability Control 109 (1991), 1, 249-260. MR 1096761 |
Reference:
|
[9] Hu, H., Yuan, X., Huang, L., Huang, C.: Global dynamics of an SIRS model with demographics and transfer from ifectious to susceptible on heterogeneous networks..Math. Biosciences Engrg. 16 (2019), 5729-5749. MR 4032648, |
Reference:
|
[10] Huang, C., Cao, J., Wen, F., Yang, X.: Stability Analysis of SIR Model with Distributed Delay on Complex Networks..Plo One 08 (2016), 11, e0158813. |
Reference:
|
[11] Huang, C., Qiao, Y., Huang, L., Agarwal, R.: Dynamical behaviors of a Food-Chain model with stage structure and time delays..Adv. Difference Equations 186 (2018), 12. MR 3803384, |
Reference:
|
[12] Huang, C., Yang, Z., Yi, T., Zou, X.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities..J. Differential Equations 256 (2014), 2101-2114. MR 3160438, |
Reference:
|
[13] Huang, C., Zhang, H., Cao, J., Hu, H.: Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator..Int. J. Bifurcation Chaos 29 (2019), 7, 1950091-23. MR 3981039, |
Reference:
|
[14] Kawski, M.: Homogeneous stabilizing feedback laws..Control Theory Advanced Technol. 6 (1990), 4, 497-516. MR 1092775 |
Reference:
|
[15] Khalil, K. H.: Nonlinear Systems. (Third edition).Prentice-Hall, Upper Saddle River, NJ 2002. |
Reference:
|
[16] Krasovskii, N. N.: Stability of Motion. Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay..Stanford University Press, Stanford 1963. MR 0147744 |
Reference:
|
[17] Lin, Y., Sontag, E. D., Wang, Y.: Input to State Stabilizability for Parametrized Families of Systems..Int. J. Robust Nonlinear Control 5 (1995), 3, 187-205. MR 1329624, |
Reference:
|
[18] Long, X., S.Gong: New results on stability of {n}icholson's blowflies {e}quation with multiple pairs of {t}ime-{v}arying delays..Appl. Math. Lett. 100 (2019), 9, 106027. MR 4008616, |
Reference:
|
[19] Massera, J. L.: Contributions to stability {t}heory..Ann. Math.Second Series 64 (1958), 7, 182-206. MR 0079179, 10.2307/1969955 |
Reference:
|
[20] Raja, R., Karthik Raja, U. , Samidurai, R., Leelamani, A.: Dissipativity of discrete-time {BAM} stochastic neural networks with Markovian switching and impulses..J. Franklin Inst. 350 (2013), 10, 3217-3247. MR 3123415, |
Reference:
|
[21] Razumikhin, B. S.: The application of Lyapunov's method to problems in the stability of systems with delay..Automat. Remote Control 21 (1960), 515-520. MR 0118639 |
Reference:
|
[22] Rosier, L.: Homogeneous {L}yapunov function for {h}omogeneous {c}ontinuous {v}ector fields..Systems Control Lett. 19 (1992), 6, 467-473. MR 1195304, |
Reference:
|
[23] Sepulchre, R., Aeyels, D.: Homogeneous Lyapunov functions and necessary conditions for stabilization..Math. Control Signals Systems 9 (1996), 3, 34-58. MR 1410047, |
Reference:
|
[24] Zubov, V. I.: Mathematical Methods for the Study of Automatic Control Systems..Pergamon Press, New York - Oxford - London - Paris; Jerusalem Academic Press, Jerusalem 1962. MR 0151695 |
. |