[1] Antonelli, G., Chiaverini, S., Fusco, G.: 
A fuzzy logic based approach for mobile robot path tracking. IEEE Trans. Fuzzy Syst. 15 (2007), 211-221. 
DOI [3] Brockett, R.: Differential Geometric Control Theory. Birkhauser, Boston 1983, pp. 181-191.
[4] Campion, G., Bastin, G., D'Andrea-Novel, B: 
Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans. Rob. Autom. 12 (1996), 47-62. 
DOI [5] Chen, X., Li, C., Li, G., Luo, Y.: 
Dynamic model based motor control for wheeled mobile robots. Robot 30 (2008), 326-332. 
DOI [6] Du, H., He, Y., Cheng, Y.: 
Finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems. Kybernetika 49 (2013), 507-523. 
DOI  | 
MR 3117911 | 
Zbl 1274.93008[7] Filipescu, A., Minzu, V., Dumitrascu, B., Filipescu, A., Minca, E.: Trajectory-tracking and discrete-time sliding-mode control of wheeled mobile robots. In: Proc. IEEE Int. Conf. Inform. Autom. Shenzhen 2011, pp. 27-32.
[8] Hardy, G., Littlewood, J., Polya, G.: 
Inequalities. Cambridge University Press, Cambridge 1952. 
MR 0046395 | 
Zbl 0634.26008[9] Huang, W., Yang, Y., Hua, C.: Fixed-time tracking control approach design for nonholonomic mobile robot. In: Proc. 35th CCC, Chengdu 2016, pp. 3423-3428.
[10] Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control method for an autonomous mobile robot. In: Proc. IEEE Int. Conf. Rob. Autom. Cincinnati1990, pp. 384-389.
[11] Klančar, G., Škrjanc, I.: 
Tracking-error model-based predictive control for mobile robots in real time. Robot. Auton. Syst. 55 (2007), 460-469. 
DOI [12] Lan, Q., Niu, H., Liu, Y., Xu, H.: 
Global output-feedback finite-time stabilization for a class of stochastic nonlinear cascaded systems. Kybernetika 53 (2017), 780-802. 
DOI  | 
MR 3750103[13] Levant, A.: 
On fixed and finite time stability in sliding mode control. In: Proc. 52nd IEEE CDC, Florence 2013, pp. 4260-4265. 
MR 3050726[15] Li, J., Yang, Y., Hua, C., Guan, X.: 
Fixed-time backstepping control design for high-order strict-feedback nonlinear systems via terminal sliding mode. IET Control Theory A. 11 (2016), 1184-1193. 
DOI  | 
MR 3700336[16] Li, H., Zhu, M., Chu, Z., Du, H., Wen, G., Alotaibi, N.: 
Fixed-time synchronization of a class of second-order nonlinear leader-following multi-agent systems. Asian J. Control 20 (2018), 39-48. 
DOI  | 
MR 3756801[17] Mendoza, M., Bonilla, I., Reyes, F., Gonzalezgalvan, E.: 
A Lyapunov-based design tool of impedance controllers for robot manipulators. Kybernetika 48 (2012), 1136-1155. 
MR 3052878[18] Ou, M., Gu, S., Wang, X., Dong, K.: 
Finite-time tracking control of multiple nonholonomic mobile robots with external disturbances. Kybernetika 51 (2015), 1049-1067. 
DOI  | 
MR 3453685[19] Ou, M., Li, S., Wang, C.: 
Finite-time tracking control for nonholonomic mobile robots based on visual servoing. Asian J. Control 16 (2014), 679-691. 
DOI  | 
MR 3216258[20] Ou, M., Sun, H., Li, S.: 
Finite time tracking control of a nonholonomic mobile robot with external disturbances. In: Proc. 31th CCC, Hefei 2012, pp. 853-858. 
MR 3013579 | 
Zbl 1265.68291[21] Polyakov, A.: 
Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Automat. Control 57 (2012), 2106-2110. 
DOI  | 
MR 2957184[22] Qian, C., Lin, W.: 
A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Automat. Control 46 (2001), 1061-1079. 
DOI  | 
MR 1842139 | 
Zbl 1012.93053[23] Sun, H., Hou, L., Zong, G., Yu, X.: 
Fixed-time attitude tracking control for spacecraft with input quantization. IEEE Trans. Aero. Elec. Syst. 55 (2019), 124-134. 
DOI 10.1109/TAES.2018.2849158[24] Teng, T., Yang, C., He, W., Na, J., Li, Z.: Transient tracking performance guaranteed neural control of robotic manipulators with finite-time learning convergence. In: Proc. 24th ICONIP, Guangzhou 2017, pp. 365-375.
[25] Tian, B., Lu, H., Zuo, Z., Yang, W.: 
Fixed-time leader-follower output feedback consensus for second-order multiagent systems. IEEE Trans. Cybernetics 49 (2019), 1545-1550. 
DOI  | 
MR 3871136[26] Wang, X., Zong, G., Sun, H.: 
Asynchronous finite-time dynamic output feedback control for switched time-delay systems with non-linear disturbances. IET Control Theory A. 10 (2016), 1142-1150. 
DOI  | 
MR 3524845[27] Wu, Y., Wang, B., Zong, G.: 
Finite time tracking controller design for nonholonomic systems with extended chained form. IEEE Trans. Circuits Syst. II: Express Briefs 52 (2005), 798-802. 
DOI 10.1109/TCSII.2005.852528[28] Ye, J.: 
Tracking control for nonholonomic mobile robots: integrating the analog neural network into the backstepping technique. Neurocomputing 71 (2008), 3373-3378. 
DOI [29] Zhang, Z., Wu, Y.: 
Fixed-time regulation control of uncertain nonholonomic systems and its applications. Int. J. Control 90 (2017), 1327-1344. 
DOI  | 
MR 3652582[30] Zuo, Z.: 
Non-singular fixed-time terminal sliding mode control of non-linear systems. IET Control Theory A. 9 (2015), 545-552. 
DOI  | 
MR 3328478[31] Zuo, Z., Tie, L.: 
A new class of finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Control 87 (2014), 363-370. 
DOI  | 
MR 3172512