[1] Chilali, M., Gahinet, P: 
$\mathcal{H_{\infty}}$ design with pole placement constraints: An {LMI} approach. IEEE Trans. Automat. Control 41 (1996), 358-367. 
DOI  | 
MR 1382985[2] Desoer, C. A.: 
Decoupling linear multiinput multioutput plants by dynamic output feedback: An algebraic theory. IEEE Trans. Automat. Control 31 (1986), 744-750. 
DOI  | 
MR 0848673[3] Doyle, J. C., Glover, K., Khargonekar, P., Francis, B. A.: 
State-space solutions to standard $\mathcal{H}_{2}$ and $\mathcal{H}_{\infty}$ control problems. IEEE Trans. Automat. Control 34 (1989), 831-847. 
DOI  | 
MR 1004301[4] Folly, K. A.: A Comparison of Two Methods for Preventing Pole-zero Cancellation in ${H}_{\infty}$ Power System Controller Design. IEEE Lausanne Power Tech (2007).
[5] Flores, M. A., Galindo, R.: Robust control for outputs of interest different from the measured outputs, based on the parameterization of stabilizing controllers. Control robusto para salidas de interés diferentes a las medidas, basado en la parametrización de controladores estabilizantes. In: {XVI} Latinamerican Congress of Automatic Control, {CLCA} 2014.
[6] Gahinet, P., Apkarian, P.: 
A linear matrix inequality approach to ${H}_{\infty}$ control. Int. J. Robust Nonlinear Control 4 (1994), 421-448. 
DOI  | 
MR 1286148[7] Galindo, R.: 
Parameterization of all stable controllers stabilizing full state information systems and mixed sensitivity. In: Proc. The Institution of Mechanical Engineers Part {I}: J. Systems Control Engrg. 223 (2009), 957-971. 
DOI [8] Galindo, R.: 
Input/output decoupling of square linear systems by dynamic two-parameter stabilizing control. Asian J. Control 18 (2016), 2310-2316. 
DOI  | 
MR 3580390[9] Galindo, R., Conejo, C. D.: A Parametrization of all one parameter stabilizing controllers and a mixed sensitivity problem, for square systems. In: International Conference on Electrical Engineering, Computing Science and Automatic Control (012, pp. 1-6.
[10] Galindo, R., Malabre, M., Kučera, V.: Mixed sensitivity $\mathcal{H}_{\infty}$ control for {LTI} systems. IEEE Conf. Decision Control 2 (2004), 1331-1336.
[11] Gao, W., Zhang, N., Du, H.: A half-car model for dynamic analysis of vehicles with random parameters. In: Australasian Congress on Applied Mechanics (2007).
[12] Glover, K., McFarlane, D.: 
Robust stabilization of normalized coprime factor plant descriptions with $\mathcal{H}_{\infty}$-bounded uncertainty. IEEE Trans. Automat. Control 34 (1989), 821-830. 
DOI 10.1109/9.29424 | 
MR 1004300[13] Henrion, D., Šebek, M., Kučera, V.: 
Robust Pole Placement for Second-Order Systems: An LMI Approach. Kybernetika 41 (2005), 1-14. 
MR 2130481[14] Le, X., Wang, J.: 
Robust Pole Assignment for Synthesizing Feedback Control Systems Using Recurrent Neural Networks. IEEE Trans. Neural Networks Learning Systems 25 (2014), 383-393. 
DOI 10.1109/TNNLS.2013.2275732[15] McFarlane, D., Glover, K.: 
A loop-shaping design procedure using $\mathcal{H}_{\infty}$ synthesis. IEEE Trans. Automat. Control 37 (1992), 759-769. 
DOI  | 
MR 1164547[16] Nett, C. N., Jacobson, C., Balas, M. J.: 
A connection between state-space and doubly coprime fractional representations. IEEE Trans. Automat. Control 29 (1984), 831-832. 
DOI  | 
MR 0756933[17] Sarjaš, A., Chowdhury, A., Svečko, R.: Robust Optimal Regional Closed-loop Pole Assignment over Positivity Conditions and Differential Evolution. IFAC CESCIT 48 (2015), 141-146.
[18] Tsai, M. C., Geddes, E. J. M., Postlethwaite, I.: 
Pole-zero cancellations and closed-loop properties of an ${H}_{\infty}$ mixed sensitivity design problem. Automatica 28 (1992), 519-530. 
DOI  | 
MR 1166025[19] Vidyasagar, M.: 
Control System Synthesis: A Factorization Approach. M.I.T. Press, 1985. 
MR 0787045[20] Zhou, K., Doyle, J. C., Glover, K.: 
Robust and Optimal Control. Prentice Hall, 1995. 
Zbl 0999.49500