Previous |  Up |  Next

Article

Title: Some notes on the category of fuzzy implications on bounded lattices (English)
Author: Yousefi, Amin
Author: Mashinchi, Mashaallah
Author: Mesiar, Radko
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 2
Year: 2021
Pages: 332-351
Summary lang: English
.
Category: math
.
Summary: In this paper, we introduce the product, coproduct, equalizer and coequalizer notions on the category of fuzzy implications on a bounded lattice that results in the existence of the limit, pullback, colimit and pushout. Also isomorphism, monic and epic are introduced in this category. Then a subcategory of this category, called the skeleton, is studied. Where none of any two fuzzy implications are $\Phi$-conjugate. (English)
Keyword: fuzzy implication
Keyword: t-norm
Keyword: category
Keyword: skeleton of category
MSC: 03B52
MSC: 03E72
idZBL: Zbl 07396270
idMR: MR4273579
DOI: 10.14736/kyb-2021-2-0332
.
Date available: 2021-07-30T13:11:52Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149042
.
Reference: [1] Adámek, J., Herrlich, H., Strecker, G. E.: Abstract and Concrete Categories: The Joy of Cats..Wiley, 1990. MR 1051419
Reference: [2] Baczynski, M.: On the applications of fuzzy implication functions..In: Soft Computing Applications, Springer, Berlin Heidelberg 2013, pp. 9-10.
Reference: [3] Baczynski, M., Beliakov, G., Sola, H. B., Pradera, A.: Advances in Fuzzy Implication Functions..Springer, Berlin Heidelberg 2013.
Reference: [4] Baczynski, M., Jayaram, B.: Fuzzy Implications..Springer, Berlin Heidelberg 2008.
Reference: [5] Bedregal, B. C.: Bounded lattice t-norms as an interval category..In: International Workshop on Logic, Language, Information, and Computation, Springer 2007, pp. 26-37. MR 2406220
Reference: [6] Bělohlávek, R.: Granulation and granularity via conceptual structures: A perspective from the point of view of fuzzy concept lattices..In: Data mining, rough sets and granular computing, Springer, Berlin Heidelberg 2002, pp. 265-289.
Reference: [7] Birkhoff, G.: Lattice Theory..American Mathematical Society, Rhode Island 1940. Zbl 0537.06001, MR 0001959
Reference: [8] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order..Cambridge University Press 2002. MR 1058437
Reference: [9] Baets, B. De, Mesiar, R.: Triangular norms on product lattices.Fuzzy Sets and Systems 104 (1999),1, 61-75. MR 1685810,
Reference: [10] Baets, B. De, Mesiar, R.: Discrete Triangular Norms..In:Topological and Algebraic Structures in Fuzzy Sets, Springer 2003, pp. 389-400. MR 2046749,
Reference: [11] Hájek, P.: Metamathematics of Fuzzy Logic..Volume 4, Springer Science and Business Media, 2013. Zbl 1007.03022, MR 1900263
Reference: [12] Klement, E P., Mesiar, R., Pap, E.: Triangular Norms.Volume 8, Springer Science and Business Media, 2013. Zbl 1087.20041, MR 1790096
Reference: [13] Lee, C. C.: Fuzzy logic in control systems: fuzzy logic controller..IEEE Trans. Systems Man Cybernet. 20 (1990), 2, 404-418. MR 1053340,
Reference: [14] Mayor, G., Suñer, J., Torrens, J.: Operations on Finite Settings: from Triangular Norms to Copulas..In: Copulas and Dependence Models with Applications, Springer 2017, pp. 157-170. MR 3822202,
Reference: [15] Nguyen, H. T., Walker, E. A.: A first Course in Fuzzy Logic..Chapman and Hall/CRC Press 2006. MR 2180829
Reference: [16] Pierce, B. C., Garey, M. R., Meyer, A.: Basic Category Theory for Computer Scientists..MIT Press 1991. MR 1120026
Reference: [17] Togai, M., Watanabe, H.: Expert system on a chip: An engine for real-time approximate reasoning..In: Proc. ACM SIGART international symposium on Methodologies for intelligent systems, ACM 1986, pp. 147-154.
Reference: [18] Yousefi, A., Mashinchi, M.: Categories of fuzzy implications and R-implications on bounded lattices..In: 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), IEEE 2018, pp. 40-42.
Reference: [19] Yousefi, A., Mashinchi, M.: Counting T-norms and R-implications on Bounded Lattices..In: 9th National Conference on Mathematics of Payame Noor University, On CD 2019, pp. 726-731.
Reference: [20] Yu, Y., Mordeson, J. N., Cheng, S. C.: Elements of L-algebra..Lecture Notes in Fuzzy Mathematics and Computer Science, Creighton University, Omaha 1994. MR 1322858
Reference: [21] Zadeh, L. A.: A computational approach to fuzzy quantifiers in natural languages..Computers Math. Appl. 9, Elsevier (1983), 149-184. Zbl 0517.94028, MR 0719073,
.

Files

Files Size Format View
Kybernetika_57-2021-2_8.pdf 504.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo