Previous |  Up |  Next

Article

Title: On the constructions of t-norms and t-conorms on some special classes of bounded lattices (English)
Author: Aşıcı, Emel
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 2
Year: 2021
Pages: 352-371
Summary lang: English
.
Category: math
.
Summary: Recently, the topic related to the construction of triangular norms and triangular conorms on bounded lattices using ordinal sums has been extensively studied. In this paper, we introduce a new ordinal sum construction of triangular norms and triangular conorms on an appropriate bounded lattice. Also, we give some illustrative examples for clarity. Then, we show that a new construction method can be generalized by induction to a modified ordinal sum for triangular norms and triangular conorms on an appropriate bounded lattice, respectively. And we provide some illustrative examples. (English)
Keyword: t-norm
Keyword: t-conorm
Keyword: ordinal sum
Keyword: bounded lattice
MSC: 03B52
MSC: 03E72
idZBL: Zbl 07396271
idMR: MR4273580
DOI: 10.14736/kyb-2021-2-0352
.
Date available: 2021-07-30T13:13:13Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149043
.
Reference: [1] Aşıcı, E.: An extension of the ordering based on nullnorms..Kybernetika 55 (2019), 217-232. MR 4014584,
Reference: [2] Aşıcı, E.: The equivalence of uninorms induced by the $ U $-partial order..Hacet. J. Math. Stat. 357 (2019), 2-26. MR 3974553,
Reference: [3] Aşıcı, E., Mesiar, R.: New constructions of triangular norms and triangular conorms on an arbitrary bounded lattice..Int. J. Gen. Systems 49 (2020), 143-160. MR 4074092,
Reference: [4] Aşıcı, E., Mesiar, R.: Alternative approaches to obtain t-norms and t-conorms on bounded lattices..Iran. J. Fuzzy Syst. 17 (2020), 121-138. MR 4155854,
Reference: [5] Aşıcı, E., Mesiar, R.: On the construction of uninorms on bounded lattices..Fuzzy Sets Syst. 408 (2021), 65-85. MR 4210984,
Reference: [6] Aşıcı, E., Karaçal, F.: On the T-partial order and properties..Inform. Sci. 267 (2014), 323-333. MR 3177320,
Reference: [7] Bedregal, B., Reiser, R., Bustince, H., Lopez-Molina, C., Torra, V.: Aggregation functions for typical hesitant fuzzy elements and the action of automorphisms..Inform. Sci. 255 (2014), 1, 82-99. MR 3117131,
Reference: [8] Birkhoff, G.: Lattice Theory. Third edition..Providence, 1967. MR 0227053
Reference: [9] Clifford, A.: Naturally totally ordered commutative semigroups..Amer. J. Math. 76 (1954), 631-646. MR 0062118,
Reference: [10] Çaylı, G. D.: Construction methods for idempotent nullnorms on bounded lattices..Appl. Math. Comput. 366 (2020). MR 4011595,
Reference: [11] Çaylı, G. D.: Some methods to obtain t-norms and t-conorms on bounded lattices..Kybernetika 55 (2019), 273-294. MR 4014587,
Reference: [12] Çaylı, G. D.: Alternative approaches for generating uninorms on bounded lattices..Inform. Sci. 488 (2019), 111-139. MR 3924420,
Reference: [13] Çaylı, G. D.: On a new class of t-norms and t-conorms on bounded lattices..Fuzzy Sets Syst. 332 (2018), 129-143. MR 3732255,
Reference: [14] Dan, Y., Hu, B. Q., Qiao, J.: New construction of t-norms and t-conorms on bounded lattices..Fuzzy Sets Syst. 395 (2020), 40-70. MR 4109061,
Reference: [15] Dvořák, A., Holčapek, M.: New construction of an ordinal sum of t-norms and t-conorms on bounded lattices..Inform. Sci. 515 (2020), 116-131. MR 4042588,
Reference: [16] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices..Int. J. Intell. Syst. 30 (2015), 807-817.
Reference: [17] Goguen, J. A.: L-fuzzy sets..J. Math. Anal. Appl. 18 (1967), 145-174. MR 0224391,
Reference: [18] İnce, M. A., Karaçal, F., Mesiar, R.: Medians and nullnorms on bounded lattices..Fuzzy Sets Syst. 289 (2016), 74-81. MR 3454462,
Reference: [19] Karaçal, F., İnce, M. A., Mesiar, R.: Nullnorms on bounded lattices..Inform. Sci. 325 (2015), 227-235. MR 3392300,
Reference: [20] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096
Reference: [21] Medina, J.: Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices..Fuzzy Sets Syst. 202 (2012), 75-88. MR 2934787,
Reference: [22] Mostert, P. S., Shields, A. L.: On the Structure of Semigroups on a Compact Manifold With Boundary..Ann. Math., II. Ser. 65 (1957), 117-143. MR 0084103,
Reference: [23] Ouyang, Y., Zhang, H-P., Baets, B. D.: Ordinal sums of triangular norms on a bounded lattice..Fuzzy Sets Syst. 408 (2021), 1-12. MR 4210979,
Reference: [24] Rodriguez, R. M., Martinez, L., Herrera, F.: Fuzzy linguistic term sets for decision making..IEEE Trans. Fuzzy Syst. 20 (2012), 2, 109-119.
Reference: [25] Rodriguez, R. M., Martinez, L., Herrera, F.: A group decision making model dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term sets..Inform. Sci. 241 (2013), 28-42. MR 3064113,
Reference: [26] Rodriguez, R. M., Martinez, L., Torra, V., Xu, Z. S., Herrera, F.: Hesitant fuzzy sets: state of the art and future directions..Int. J. Intell. Syst. 29 (2014), 6, 495-524.
Reference: [27] Saminger, S.: On ordinal sums of triangular norms on bounded lattices..Fuzzy Sets Syst. 325 (2006), 1403-1416. Zbl 1099.06004, MR 2226983
Reference: [28] Schweizer, B., Sklar, A.: Statistical metric spaces..Pacific J. Math. 10 (1960), 313-334. Zbl 0136.39301, MR 0115153,
Reference: [29] Torra, V.: Hesitant fuzzy sets..Int. J. Intell. Syst. 25 (2010), 529-539.
.

Files

Files Size Format View
Kybernetika_57-2021-2_9.pdf 459.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo