Previous |  Up |  Next

Article

Title: Radial Minkowski additive operators (English)
Author: Ji, Lewen
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 3
Year: 2021
Pages: 641-654
Summary lang: English
.
Category: math
.
Summary: We give some characterizations for radial Minkowski additive operators and prove a new characterization of balls. Finally, we show the property of radial Minkowski homomorphism. (English)
Keyword: characterization
Keyword: radial Minkowski additive operator
Keyword: radial Minkowski homomorphism
MSC: 52A20
MSC: 52A40
idZBL: 07396188
idMR: MR4295236
DOI: 10.21136/CMJ.2021.0366-19
.
Date available: 2021-08-02T08:01:22Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149047
.
Reference: [1] Abardia-Evéquoz, J., Colesanti, A., Gómez, E. Saorín: Minkowski additive operators under volume constraints.J. Geom. Anal. 28 (2018), 2422-2455. Zbl 1408.52023, MR 3833799, 10.1007/s12220-017-9909-x
Reference: [2] Abardia-Evéquoz, J., Colesanti, A., Gómez, E. Saorín: Minkowski valuations under volume constraints.Adv. Math. 333 (2018), 118-158. Zbl 1400.52007, MR 3818074, 10.1016/j.aim.2018.05.033
Reference: [3] Alesker, S.: Continuous rotation invariant valuations on convex sets.Ann. Math. (2) 149 (1999), 977-1005. Zbl 0941.52002, MR 1709308, 10.2307/121078
Reference: [4] Chen, B., Rota, G.-C.: Totally invariant set functions of polynomial type.Commun. Pure Appl. Math. 47 (1994), 187-197. Zbl 0815.52009, MR 1263127, 10.1002/cpa.3160470203
Reference: [5] Colesanti, A., Ludwig, M., Mussnig, F.: Minkowski valuations on convex functions.Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 162, 29 pages. Zbl 1400.52014, MR 3715395, 10.1007/s00526-017-1243-4
Reference: [6] Dorrek, F.: Minkowski endomorphisms.Geom. Funct. Anal. 27 (2017), 466-488. Zbl 1372.52005, MR 3655954, 10.1007/s00039-017-0405-z
Reference: [7] Dulio, P., Gardner, R. J., Peri, C.: Characterizing the dual mixed volume via additive functionals.Indiana Univ. Math. J. 65 (2016), 69-91. Zbl 1352.52008, MR 3466456, 10.1512/iumj.2016.65.5765
Reference: [8] Gardner, R. J.: A positive answer to the Busemann-Petty problem in three dimensions.Ann. Math. (2) 140 (1994), 435-447. Zbl 0826.52010, MR 1298719, 10.2307/2118606
Reference: [9] Gardner, R. J.: Intersection bodies and the Busemann-Petty problem.Trans. Am. Math. Soc. 342 (1994), 435-445. Zbl 0801.52005, MR 1201126, 10.1090/S0002-9947-1994-1201126-7
Reference: [10] Gardner, R. J., Koldobski, A., Schlumprecht, T.: An analytical solution to the Busemann-Petty problem on sections of convex bodies.Ann. Math. (2) 149 (1999), 691-703. Zbl 0937.52003, MR 1689343, 10.2307/120978
Reference: [11] Grinberg, E., Zhang, G.: Convolutions, transforms, and convex bodies.Proc. Lond. Math. Soc., III. Ser. 78 (1999), 77-115. Zbl 0974.52001, MR 1658156, 10.1112/S0024611599001653
Reference: [12] Guo, L., Jia, H.: The dual Blaschke addition.J. Geom. Anal. 30 (2020), 3026-3034. Zbl 1440.52006, MR 4105144, 10.1007/s12220-019-00190-7
Reference: [13] Ji, L., Zeng, Z.: Some inequalities for radial Blaschke-Minkowski homomorphisms.Czech. Math. J. 67 (2017), 779-793. Zbl 06770130, MR 3697916, 10.21136/CMJ.2017.0180-16
Reference: [14] Kiderlen, M.: Blaschke- and Minkowski-endomorphisms of convex bodies.Trans. Am. Math. Soc. 358 (2006), 5539-5564. Zbl 1111.52007, MR 2238926, 10.1090/S0002-9947-06-03914-6
Reference: [15] Klain, D. A.: Star valuations and dual mixed volumes.Adv. Math. 121 (1996), 80-101. Zbl 0858.52003, MR 1399604, 10.1006/aima.1996.0048
Reference: [16] Klain, D. A.: Invariant valuations on star-shaped sets.Adv. Math. 125 (1997), 95-113. Zbl 0889.52007, MR 1427802, 10.1006/aima.1997.1601
Reference: [17] Ludwig, M.: Intersection bodies and valuations.Am. J. Math. 128 (2006), 1409-1428. Zbl 1115.52007, MR 2275906, 10.1353/ajm.2006.0046
Reference: [18] Lutwak, E.: Dual mixed volumes.Pac. J. Math. 58 (1975), 531-538. Zbl 0273.52007, MR 0380631, 10.2140/pjm.1975.58.531
Reference: [19] Lutwak, E.: Intersection bodies and dual mixed volumes.Adv. Math. 71 (1988), 232-261. Zbl 0657.52002, MR 0963487, 10.1016/0001-8708(88)90077-1
Reference: [20] Schneider, R.: On Steiner point of convex bodies.Isr. J. Math. 9 (1971), 241-249. Zbl 0208.50402, MR 0278187, 10.1007/BF02771589
Reference: [21] Schneider, R.: Equivariant endomorphisms of the space of convex bodies.Trans. Am. Math. Soc. 194 (1974), 53-78. Zbl 0287.52004, MR 0353147, 10.1090/S0002-9947-1974-0353147-1
Reference: [22] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory.Encyclopedia of Mathematics and its Applications 151. Cambridge University Press, Cambridge (2014). Zbl 1287.52001, MR 3155183, 10.1017/CBO9781139003858
Reference: [23] Schuster, F. E.: Volume inequalities and additive maps of convex bodies.Mathematika 53 (2006), 211-234. Zbl 1129.52002, MR 2343256, 10.1112/S0025579300000103
Reference: [24] Schuster, F. E.: Convolutions and multiplier transformations of convex bodies.Trans. Am. Math. Soc. 359 (2007), 5567-5591. Zbl 1156.52003, MR 2327043, 10.1090/S0002-9947-07-04270-5
Reference: [25] Schuster, F. E.: Valuations and Busemann-Petty type problems.Adv. Math. 219 (2008), 344-368. Zbl 1146.52003, MR 2435426, 10.1016/j.aim.2008.05.001
Reference: [26] Tradacete, P., Villanueva, I.: Radial continuous valuations on star bodies.J. Math. Anal. Appl. 454 (2017), 995-1018. Zbl 1368.52011, MR 3658809, 10.1016/j.jmaa.2017.05.026
Reference: [27] Tradacete, P., Villanueva, I.: Continuity and representation of valuations on star bodies.Adv. Math. 329 (2018), 361-391. Zbl 1400.52015, MR 3783417, 10.1016/j.aim.2018.02.021
Reference: [28] Villanueva, I.: Radial continuous rotation invariant valuations on star bodies.Adv. Math. 291 (2016), 961-981. Zbl 1338.52015, MR 3459034, 10.1016/j.aim.2015.12.030
Reference: [29] Wang, W., Liu, L.: Fourier transform and valuations.J. Math. Anal. Appl. 470 (2019), 1167-1184. Zbl 1412.42013, MR 3870609, 10.1016/j.jmaa.2018.10.056
Reference: [30] Zhang, G.: A positive solution to the Busemann-Petty problem in $\mathbb R^4$.Ann. Math. (2) 149 (1999), 535-543. Zbl 0937.52004, MR 1689339, 10.2307/120974
Reference: [31] Zhao, C.-J.: On Blaschke-Minkowski homomorphisms and radial Blaschke-Minkowski homomorphisms.J. Geom. Anal. 26 (2016), 1523-1538. Zbl 1350.52004, MR 3472843, 10.1007/s12220-015-9598-2
.

Files

Files Size Format View
CzechMathJ_71-2021-3_2.pdf 261.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo