Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
weak dimension; Gorenstein weak dimension; principal module; group ring
Summary:
Let $K$ be a field, and let $G$ be a group. In the present paper, we investigate when the group ring $K[G]$ has finite weak dimension and finite Gorenstein weak dimension. We give some analogous versions of Serre's theorem for the weak dimension and the Gorenstein weak dimension.
References:
[1] Auslander, M.: On regular group rings. Proc. Am. Math. Soc. 8 (1957), 658-664. DOI 10.1090/S0002-9939-1957-0087670-X | MR 0087670 | Zbl 0079.26703
[2] Auslander, M., Bridger, M.: Stable Module Theory. Memoirs of the American Mathematical Society 94. American Mathematical Society, Providence (1969). DOI 10.1090/memo/0094 | MR 0269685 | Zbl 0204.36402
[3] Bennis, D., Mahdou, N.: Global Gorenstein dimensions. Proc. Am. Math. Soc. 138 (2010), 461-465. DOI 10.1090/S0002-9939-09-10099-0 | MR 2557164 | Zbl 1205.16007
[4] Benson, D. J., Goodearl, K. R.: Periodic flat modules, and flat modules for finite groups. Pac. J. Math. 196 (2000), 45-67. DOI 10.2140/pjm.2000.196.45 | MR 1797235 | Zbl 1073.20500
[5] Colby, R. R.: Rings which have flat injective modules. J. Algebra 35 (1975), 239-252. DOI 10.1016/0021-8693(75)90049-6 | MR 0376763 | Zbl 0306.16015
[6] Connell, I. G.: On the group ring. Can. J. Math. 15 (1963), 650-685. DOI 10.4153/CJM-1963-067-0 | MR 0153705 | Zbl 0121.03502
[7] Emmanouil, I.: On the finiteness of Gorenstein homological dimensions. J. Algebra 372 (2012), 376-396. DOI 10.1016/j.jalgebra.2012.09.018 | MR 2990016 | Zbl 1286.13014
[8] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. DOI 10.1007/BF02572634 | MR 1363858 | Zbl 0845.16005
[9] Glaz, S.: Commutative Coherent Rings. Lecture Notes in Mathematics 1371. Springer, Berlin (1989). DOI 10.1007/BFb0084570 | MR 0999133 | Zbl 0745.13004
[10] Govorov, V. E.: On flat modules. Sib. Mat. Zh. 6 (1965), 300-304 Russian. MR 0174598 | Zbl 0156.27104
[11] Holm, H.: Gorenstein Homological Algebra: Ph.D. Thesis. University of Copenhagen, Copenhagen (2004). MR 2038564
[12] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. DOI 10.1016/j.jpaa.2003.11.007 | MR 2038564 | Zbl 1050.16003
[13] Lam, T. Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics 131. Springer, New York (2001). DOI 10.1007/978-1-4419-8616-0 | MR 1838439 | Zbl 0980.16001
[14] Li, L.: Representations of modular skew group algebras. Trans. Am. Math. Soc. 367 (2015), 6293-6314. DOI 10.1090/S0002-9947-2015-06242-4 | MR 3356938 | Zbl 1329.16020
[15] Passman, D. S.: The Algebraic Structure of Group Rings. John Wiley, New York (1977). MR 0470211 | Zbl 0368.16003
[16] Rotman, J. J.: An Introduction to Homological Algebra. Pure and Applied Mathematics 85. Academic Press, New York (1979). DOI 10.1007/b98977 | MR 0538169 | Zbl 0441.18018
[17] Stammbach, U.: On the weak homological dimension of the group algebra of solvable groups. J. Lond. Math. Soc., II. Ser. 2 (1970), 567-570. DOI 10.1112/jlms/2.Part_3.567 | MR 0263927 | Zbl 0204.35302
[18] Swan, R. G.: Groups of cohomological dimension one. J. Algebra 12 (1969), 585-601. DOI 10.1016/0021-8693(69)90030-1 | MR 0240177 | Zbl 0188.07001
[19] Xiang, Y.: Homological dimensions of skew group rings. Algebra Colloq. 27 (2020), 319-330. DOI 10.1142/S1005386720000267 | MR 4095944 | Zbl 07202815
Partner of
EuDML logo