Title:
|
Morse-Bott functions with two critical values on a surface (English) |
Author:
|
Gelbukh, Irina |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
3 |
Year:
|
2021 |
Pages:
|
865-880 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study Morse-Bott functions with two critical values (equivalently, nonconstant without saddles) on closed surfaces. We show that only four surfaces admit such functions (though in higher dimensions, we construct many such manifolds, e.g. as fiber bundles over already constructed manifolds with the same property). We study properties of such functions. Namely, their Reeb graphs are path or cycle graphs; any path graph, and any cycle graph with an even number of vertices, is isomorphic to the Reeb graph of such a function. They have a specific number of center singularities and singular circles with nonorientable normal bundle, and an unlimited number (with some conditions) of singular circles with orientable normal bundle. They can, or cannot, be chosen as the height function associated with an immersion of the surface in the three-dimensional space, depending on the surface and the Reeb graph. In addition, for an arbitrary Morse-Bott function on a closed surface, we show that the Euler characteristic of the surface is determined by the isolated singularities and does not depend on the singular circles. (English) |
Keyword:
|
Morse-Bott function |
Keyword:
|
height function |
Keyword:
|
surface |
Keyword:
|
critical value |
Keyword:
|
Reeb graph |
MSC:
|
05C38 |
MSC:
|
57K20 |
MSC:
|
58C05 |
idZBL:
|
07396203 |
idMR:
|
MR4295251 |
DOI:
|
10.21136/CMJ.2021.0125-20 |
. |
Date available:
|
2021-08-02T08:09:36Z |
Last updated:
|
2023-10-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149062 |
. |
Reference:
|
[1] Banyaga, A., Hurtubise, D. E.: A proof of the Morse-Bott lemma.Expo. Math. 22 (2004), 365-373. Zbl 1078.57031, MR 2075744, 10.1016/S0723-0869(04)80014-8 |
Reference:
|
[2] Banyaga, A., Hurtubise, D. E.: The Morse-Bott inequalities via a dynamical systems approach.Ergodic Theory Dyn. Syst. 29 (2009), 1693-1703. Zbl 1186.37038, MR 2563088, 10.1017/S0143385708000928 |
Reference:
|
[3] Duan, H., Rees, E. G.: Functions whose critical set consists of two connected manifolds.Bol. Soc. Mat. Mex., II. Ser. 37 (1992), 139-149. Zbl 0867.57025, MR 1317568 |
Reference:
|
[4] Gelbukh, I.: Close cohomologous Morse forms with compact leaves.Czech. Math. J. 63 (2013), 515-528. Zbl 1289.57009, MR 3073975, 10.1007/s10587-013-0034-0 |
Reference:
|
[5] Gelbukh, I.: The co-rank of the fundamental group: The direct product, the first Betti number, and the topology of foliations.Math. Slovaca 67 (2017), 645-656. Zbl 1424.14003, MR 3660746, 10.1515/ms-2016-0298 |
Reference:
|
[6] Gelbukh, I.: Approximation of metric spaces by Reeb graphs: Cycle rank of a Reeb graph, the co-rank of the fundamental group, and large components of level sets on Riemannian manifolds.Filomat 33 (2019), 2031-2049. MR 4036359, 10.2298/FIL1907031G |
Reference:
|
[7] Hurtubise, D. E.: Three approaches to Morse-Bott homology.Afr. Diaspora J. Math. 14 (2012), 145-177. Zbl 1311.57043, MR 3093241 |
Reference:
|
[8] Jiang, M.-Y.: Morse homology and degenerate Morse inequalities.Topol. Methods Nonlinear Anal. 13 (1999), 147-161. Zbl 0940.57034, MR 1716589, 10.12775/TMNA.1999.007 |
Reference:
|
[9] Kudryavtseva, E. A.: Realization of smooth functions on surfaces as height functions.Sb. Math. 190 (1999), 349-405. Zbl 0941.57026, MR 1700994, 10.1070/SM1999v190n03ABEH000392 |
Reference:
|
[10] Leininger, C. J., Reid, A. W.: The co-rank conjecture for 3-manifold groups.Algebr. Geom. Topol. 2 (2002), 37-50. Zbl 0983.57001, MR 1885215, 10.2140/agt.2002.2.37 |
Reference:
|
[11] Martínez-Alfaro, J., Meza-Sarmiento, I. S., Oliveira, R. D. S.: Topological classification of simple Morse Bott functions on surfaces.Real and Complex Singularities Contemporary Mathematics 675. American Mathematical Society, Providence (2016), 165-179. Zbl 1362.37078, MR 3578724, 10.1090/conm/675/13590 |
Reference:
|
[12] Martínez-Alfaro, J., Meza-Sarmiento, I. S., Oliveira, R. D. S.: Singular levels and topological invariants of Morse-Bott foliations on non-orientable surfaces.Topol. Methods Nonlinear Anal. 51 (2018), 183-213. Zbl 1393.37057, MR 3784742, 10.12775/TMNA.2017.051 |
Reference:
|
[13] Milnor, J. W.: Morse theory.Annals of Mathematics Studies 51. Princeton University Press, Princeton (1963). Zbl 0108.10401, MR 0163331, 10.1515/9781400881802 |
Reference:
|
[14] Nicolaescu, L. I.: An Invitation to Morse Theory.Universitext. Springer, Berlin (2011). Zbl 1238.57001, MR 2883440, 10.1007/978-1-4614-1105-5 |
Reference:
|
[15] Panov, D.: Immersion in $R^3$ of a Klein bottle with Morse-Bott height function without centers.MathOverflow Available at https://mathoverflow.net/q/343792 2019. |
Reference:
|
[16] Prishlyak, A. O.: Topological equivalence of smooth functions with isolated critical points on a closed surface.Topology Appl. 119 (2002), 257-267. Zbl 1042.57021, MR 1888671, 10.1016/S0166-8641(01)00077-3 |
Reference:
|
[17] Rot, T. O.: The Morse-Bott inequalities, orientations, and the Thom isomorphism in Morse homology.C. R., Math., Acad. Sci. Paris 354 (2016), 1026-1028. Zbl 1350.57035, MR 3553908, 10.1016/j.crma.2016.08.003 |
Reference:
|
[18] Saeki, O.: Reeb spaces of smooth functions on manifolds.(to appear) in Int. Math. Res. Not. 10.1093/imrn/rnaa301 |
. |