Previous |  Up |  Next

Article

Title: On the necessary and sufficient conditions for the convergence of the difference schemes for the general boundary value problem for the linear systems of ordinary differential equations (English)
Author: Ashordia, Malkhaz
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 3
Year: 2021
Pages: 333-362
Summary lang: English
.
Category: math
.
Summary: We consider the numerical solvability of the general linear boundary value problem for the systems of linear ordinary differential equations. Along with the continuous boundary value problem we consider the sequence of the general discrete boundary value problems, i.e. the corresponding general difference schemes. We establish the effective necessary and sufficient (and effective sufficient) conditions for the convergence of the schemes. Moreover, we consider the stability of the solutions of general discrete linear boundary value problems, in other words, the continuous dependence of solutions on the small perturbation of the initial dates. In the direction, there are obtained the necessary and sufficient condition, as well. The proofs of the results are based on the concept that both the continuous and discrete boundary value problems can be considered as so called generalized ordinary differential equation in the sense of Kurzweil. Thus, our results follow from the corresponding well-posedness results for the linear boundary value problems for generalized differential equations. (English)
Keyword: general linear boundary value problem
Keyword: linear ordinary differential systems
Keyword: numerical solvability
Keyword: convergence of difference schemes
Keyword: effective necessary and sufficient conditions
Keyword: generalized ordinary differential equations in the Kurzweil sense
MSC: 34A06
MSC: 34B05
MSC: 34K06
MSC: 65L20
DOI: 10.21136/MB.2020.0052-18
.
Date available: 2021-08-18T08:25:45Z
Last updated: 2021-08-18
Stable URL: http://hdl.handle.net/10338.dmlcz/149074
.
Reference: [1] Ashordia, M.: On the correctness of linear boundary value problems for systems of generalized ordinary differential equations.Georgian Math. J. 1 (1994), 343-351. Zbl 0808.34015, MR 1262572, 10.1007/BF02307443
Reference: [2] Ashordia, M.: Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations.Czech. Math. J. 46 (1996), 385-404. Zbl 0879.34037, MR 1408294, 10.21136/CMJ.1996.127304
Reference: [3] Ashordia, M.: Lyapunov stability of systems of linear generalized ordinary differential equations.Comput. Math. Appl. 50 (2005), 957-982. Zbl 1090.34043, MR 2165650, 10.1016/j.camwa.2004.04.041
Reference: [4] Ashordia, M.: On the general and multipoint boundary value problems for linear systems of generalized ordinary differential equations, linear impulse and linear difference systems.Mem. Differ. Equ. Math. Phys. 36 (2005), 1-80. Zbl 1098.34010, MR 2196660
Reference: [5] Ashordia, M.: The initial problem for linear systems of generalized ordinary differential equations, linear impulsive and ordinary differential systems. Numerical solvability.Mem. Differ. Equ. Math. Phys. 78 (2019), 1-162. MR 4088041
Reference: [6] Butcher, J. C.: Numerical Methods for Ordinary Differential Equations.John Wiley & Sons, Chichester (2003). Zbl 1040.65057, MR 1993957, 10.1002/0470868279
Reference: [7] Gelashvili, S., Kiguradze, I.: On multi-point boundary value problems for systems of functional differential and difference equations.Mem. Differ. Equ. Math. Phys. 5 (1995), 1-113. Zbl 0902.34059, MR 1415806
Reference: [8] Godunov, S. K., Ryaben'kij, V. S.: Schémas aux différences. Introduction à la théorie.Éditions Mir, Moscow (1977), French. Zbl 0374.65002, MR 0494796
Reference: [9] Hall, G., (eds.), J. M. Watt: Modern Numerical Methods for Ordinary Differential Equations.Clarendon Press, Oxford (1976). Zbl 0348.65064, MR 0474823
Reference: [10] Kurzweil, J.: Generalized ordinary differential equations.Czech. Math. J. 8 (1958), 360-388. Zbl 0094.05804, MR 0111878, 10.21136/CMJ.1957.100258
Reference: [11] Lambert, J. D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem.John Wiley & Sons, Chichester (1991). Zbl 0745.65049, MR 1127425
Reference: [12] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications.Series in Real Analysis 15. World Scientific, Hackensack (2019). Zbl 06758513, MR 3839599, 10.1142/9432
Reference: [13] Saks, S.: Theory of the Integral.Monografie Matematyczne 7. G. E. Stechert & Co., New York (1937). Zbl 0017.30004
Reference: [14] Samarskii, A. A.: The Theory of Difference Schemes.Pure and Applied Mathematics, Marcel Dekker 240. Marcel Dekker, New York (2001). Zbl 0971.65076, MR 1818323, 10.1201/9780203908518
Reference: [15] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations. Boundary Value Problems and Adjoints.D. Reidel Publishing, Dordrecht (1979). Zbl 0417.45001, MR 0542283
.

Files

Files Size Format View
MathBohem_146-2021-3_8.pdf 313.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo