Previous |  Up |  Next

Article

Title: Finite and infinite order of growth of solutions to linear differential equations near a singular point (English)
Author: Cherief, Samir
Author: Hamouda, Saada
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 3
Year: 2021
Pages: 315-332
Summary lang: English
.
Category: math
.
Summary: In this paper, we investigate the growth of solutions of a certain class of linear differential equation where the coefficients are analytic functions in the closed complex plane except at a finite singular point. For that, we will use the value distribution theory of meromorphic functions developed by Rolf Nevanlinna with adapted definitions. (English)
Keyword: linear differential equation
Keyword: growth of solution
Keyword: finite singular point
MSC: 30D35
MSC: 34M10
DOI: 10.21136/MB.2020.0148-19
.
Date available: 2021-08-18T08:25:01Z
Last updated: 2021-08-18
Stable URL: http://hdl.handle.net/10338.dmlcz/149073
.
Reference: [1] Bieberbach, L.: Theorie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grundlage dargestellt.Die Grundlehren der Mathematischen Wissenschaften 66. Springer, Berlin (1965), German. Zbl 0124.04603, MR 0176133
Reference: [2] Fettouch, H., Hamouda, S.: Growth of local solutions to linear differential equations around an isolated essential singularity.Electron. J. Differ. Equ. 2016 (2016), Paper No. 226, 10 pages. Zbl 1352.34113, MR 3547415
Reference: [3] Hamouda, S.: Finite and infinite order solutions of a class of higher order linear differential equations.Aust. J. Math. Anal. Appl. 9 (2012), Article No. 10, 9 pages. Zbl 1238.34152, MR 2903775
Reference: [4] Hamouda, S.: Properties of solutions to linear differential equations with analytic coefficients in the unit disc.Electron. J. Differ. Equ. 2012 (2012), Paper No. 177, 8 pages. Zbl 1254.34121, MR 2991411
Reference: [5] Hamouda, S.: Iterated order of solutions of linear differential equations in the unit disc.Comput. Methods Funct. Theory 13 (2013), 545-555. Zbl 1296.34175, MR 3138352, 10.1007/s40315-013-0034-y
Reference: [6] Hamouda, S.: The possible orders of growth of solutions to certain linear differential equations near a singular point.J. Math. Anal. Appl. 458 (2018), 992-1008. Zbl 1382.34097, MR 3724712, 10.1016/j.jmaa.2017.10.005
Reference: [7] Hayman, W. K.: Meromorphic Functions.Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). Zbl 0115.06203, MR 0164038
Reference: [8] Khrystiyanyn, A. Ya., Kondratyuk, A. A.: On the Nevanlinna theory for meromorphic functions on annuli. I.Mat. Stud. 23 (2005), 19-30. Zbl 1066.30036, MR 2150985
Reference: [9] Kinnunen, L.: Linear differential equations with solutions of finite iterated order.Southeast Asian Bull. Math. 22 (1998), 385-405. Zbl 0934.34076, MR 1811183
Reference: [10] Kondratyuk, A., Laine, I.: Meromorphic functions in multiply connected domains.Fourier Series Methods in Complex Analysis I. Laine University of Joensuu 10. Department of Mathematics, University of Joensuu, Joensuu (2006), 9-111. Zbl 1144.30013, MR 2296161
Reference: [11] Korhonen, R.: Nevanlinna theory in an annulus.Value Distribution Theory and Related Topics Advances in Complex Analysis and Its Applications 3. Kluwer Academic Publishers, Boston (2004), 167-179. Zbl 1102.30025, MR 2173300, 10.1007/1-4020-7951-6_7
Reference: [12] Laine, I.: Nevanlinna Theory and Complex Differential Equations.De Gruyter Studies in Mathematics 15. W. de Gruyter, Berlin (1993). Zbl 0784.30002, MR 1207139, 10.1515/9783110863147
Reference: [13] Laine, I., Yang, R.: Finite order solutions of complex linear differential equations.Electron. J. Differ. Equ. 2004 (2004), Paper No. 65, 8 pages. Zbl 1063.30031, MR 2057652
Reference: [14] Lund, M. E., Ye, Z.: Logarithmic derivatives in annuli.J. Math. Anal. Appl. 356 (2009), 441-452. Zbl 1176.30080, MR 2524280, 10.1016/j.jmaa.2009.03.025
Reference: [15] Tsuji, M.: Potential Theory in Modern Function Theory.Chelsea Publishing Company, New York (1975). Zbl 0322.30001, MR 0414898
Reference: [16] Whittaker, J. M.: The order of the derivative of a meromorphic function.J. Lond. Math. Soc. 11 (1936), 82-87. Zbl 0014.02504, MR 1574768, 10.1112/jlms/s1-11.2.82
Reference: [17] Yang, L.: Value Distribution Theory.Springer, Berlin (1993). Zbl 0790.30018, MR 1301781, 10.1007/978-3-662-02915-2
.

Files

Files Size Format View
MathBohem_146-2021-3_7.pdf 264.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo