Title:
|
Finite and infinite order of growth of solutions to linear differential equations near a singular point (English) |
Author:
|
Cherief, Samir |
Author:
|
Hamouda, Saada |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
146 |
Issue:
|
3 |
Year:
|
2021 |
Pages:
|
315-332 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we investigate the growth of solutions of a certain class of linear differential equation where the coefficients are analytic functions in the closed complex plane except at a finite singular point. For that, we will use the value distribution theory of meromorphic functions developed by Rolf Nevanlinna with adapted definitions. (English) |
Keyword:
|
linear differential equation |
Keyword:
|
growth of solution |
Keyword:
|
finite singular point |
MSC:
|
30D35 |
MSC:
|
34M10 |
DOI:
|
10.21136/MB.2020.0148-19 |
. |
Date available:
|
2021-08-18T08:25:01Z |
Last updated:
|
2021-08-18 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149073 |
. |
Reference:
|
[1] Bieberbach, L.: Theorie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grundlage dargestellt.Die Grundlehren der Mathematischen Wissenschaften 66. Springer, Berlin (1965), German. Zbl 0124.04603, MR 0176133 |
Reference:
|
[2] Fettouch, H., Hamouda, S.: Growth of local solutions to linear differential equations around an isolated essential singularity.Electron. J. Differ. Equ. 2016 (2016), Paper No. 226, 10 pages. Zbl 1352.34113, MR 3547415 |
Reference:
|
[3] Hamouda, S.: Finite and infinite order solutions of a class of higher order linear differential equations.Aust. J. Math. Anal. Appl. 9 (2012), Article No. 10, 9 pages. Zbl 1238.34152, MR 2903775 |
Reference:
|
[4] Hamouda, S.: Properties of solutions to linear differential equations with analytic coefficients in the unit disc.Electron. J. Differ. Equ. 2012 (2012), Paper No. 177, 8 pages. Zbl 1254.34121, MR 2991411 |
Reference:
|
[5] Hamouda, S.: Iterated order of solutions of linear differential equations in the unit disc.Comput. Methods Funct. Theory 13 (2013), 545-555. Zbl 1296.34175, MR 3138352, 10.1007/s40315-013-0034-y |
Reference:
|
[6] Hamouda, S.: The possible orders of growth of solutions to certain linear differential equations near a singular point.J. Math. Anal. Appl. 458 (2018), 992-1008. Zbl 1382.34097, MR 3724712, 10.1016/j.jmaa.2017.10.005 |
Reference:
|
[7] Hayman, W. K.: Meromorphic Functions.Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). Zbl 0115.06203, MR 0164038 |
Reference:
|
[8] Khrystiyanyn, A. Ya., Kondratyuk, A. A.: On the Nevanlinna theory for meromorphic functions on annuli. I.Mat. Stud. 23 (2005), 19-30. Zbl 1066.30036, MR 2150985 |
Reference:
|
[9] Kinnunen, L.: Linear differential equations with solutions of finite iterated order.Southeast Asian Bull. Math. 22 (1998), 385-405. Zbl 0934.34076, MR 1811183 |
Reference:
|
[10] Kondratyuk, A., Laine, I.: Meromorphic functions in multiply connected domains.Fourier Series Methods in Complex Analysis I. Laine University of Joensuu 10. Department of Mathematics, University of Joensuu, Joensuu (2006), 9-111. Zbl 1144.30013, MR 2296161 |
Reference:
|
[11] Korhonen, R.: Nevanlinna theory in an annulus.Value Distribution Theory and Related Topics Advances in Complex Analysis and Its Applications 3. Kluwer Academic Publishers, Boston (2004), 167-179. Zbl 1102.30025, MR 2173300, 10.1007/1-4020-7951-6_7 |
Reference:
|
[12] Laine, I.: Nevanlinna Theory and Complex Differential Equations.De Gruyter Studies in Mathematics 15. W. de Gruyter, Berlin (1993). Zbl 0784.30002, MR 1207139, 10.1515/9783110863147 |
Reference:
|
[13] Laine, I., Yang, R.: Finite order solutions of complex linear differential equations.Electron. J. Differ. Equ. 2004 (2004), Paper No. 65, 8 pages. Zbl 1063.30031, MR 2057652 |
Reference:
|
[14] Lund, M. E., Ye, Z.: Logarithmic derivatives in annuli.J. Math. Anal. Appl. 356 (2009), 441-452. Zbl 1176.30080, MR 2524280, 10.1016/j.jmaa.2009.03.025 |
Reference:
|
[15] Tsuji, M.: Potential Theory in Modern Function Theory.Chelsea Publishing Company, New York (1975). Zbl 0322.30001, MR 0414898 |
Reference:
|
[16] Whittaker, J. M.: The order of the derivative of a meromorphic function.J. Lond. Math. Soc. 11 (1936), 82-87. Zbl 0014.02504, MR 1574768, 10.1112/jlms/s1-11.2.82 |
Reference:
|
[17] Yang, L.: Value Distribution Theory.Springer, Berlin (1993). Zbl 0790.30018, MR 1301781, 10.1007/978-3-662-02915-2 |
. |