Previous |  Up |  Next

Article

Title: Notes on generalizations of Bézout rings (English)
Author: El Alaoui, Haitham
Author: Mouanis, Hakima
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 3
Year: 2021
Pages: 265-272
Summary lang: English
.
Category: math
.
Summary: In this paper, we give new characterizations of the $P$-$2$-Bézout property of trivial ring extensions. Also, we investigate the transfer of this property to homomorphic images and to finite direct products. Our results generate original examples which enrich the current literature with new examples of non-$2$-Bézout $P$-$2$-Bézout rings and examples of non-$P$-Bézout $P$-$2$-Bézout rings. (English)
Keyword: $P$-Bézout ring
Keyword: 2-Bézout ring
Keyword: $P$-2-Bézout ring
Keyword: trivial rings extension
Keyword: homomorphic image
Keyword: finite direct product
MSC: 13A15
MSC: 13B10
MSC: 13D02
MSC: 13F05
idMR: MR4331281
DOI: 10.14712/1213-7243.2021.020
.
Date available: 2021-10-18T08:27:10Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149142
.
Reference: [1] Anderson D. D., Winders M.: Idealization of a module.J. Commut. Algebra 1 (2009), no. 1, 3–56. Zbl 1194.13002, 10.1216/JCA-2009-1-1-3
Reference: [2] Bakkari C.: On $P$-Bézout rings.Int. J. of Algebra 3 (2009), no. 13–16, 669–673.
Reference: [3] Bakkari C.: $P$-Bézout property in pullbacks.Int. J. Contemp. Math. Sci. 4 (2009), no. 21–24, 1209–1213.
Reference: [4] Bakkari C., Ouarghi K.: On $2$-Bézout rings.Int. J. Algebra 4 (2010), no. 5–8, 241–245.
Reference: [5] Costa D. L.: Parameterizing families of non-Noetherian rings.Comm. Algebra 22 (1994), no. 10, 3997–4011. Zbl 0814.13010, 10.1080/00927879408825061
Reference: [6] El Alaoui H., Mouanis H.: On $P$-$2$-Bézout rings.Gulf J. Math. 7 (2019), no. 3, 1–6.
Reference: [7] Gillman L., Henriksen M.: Some remarks about elementary divisor rings.Trans. Amer. Math. Soc. 82 (1956), 362–365. 10.1090/S0002-9947-1956-0078979-8
Reference: [8] Glaz S.: Commutative Coherent Rings.Lecture Notes in Mathematics, 1371, Springer, Berlin, 1989. Zbl 0787.13001, 10.1007/BFb0084576
Reference: [9] Huckaba J. A.: Commutative Rings with Zero Divisors.Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, New York, 1988. Zbl 0637.13001
Reference: [10] Kabbaj S.-E., Mahdou N.: Trivial extensions defined by coherent-like conditions.Comm. Algebra 32 (2004), no. 10, 3937–3953. Zbl 1068.13002, 10.1081/AGB-200027791
Reference: [11] Kaplansky I.: Elementary divisors and modules.Trans. Amer. Math. Soc. 66 (1949), 464–491. 10.1090/S0002-9947-1949-0031470-3
Reference: [12] Larsen M. D., Lewis W. J., Shores T. S.: Elementary divisors rings and finitely presented modules.Trans. Amer. Math. Soc. 187 (1974), 231–248. 10.1090/S0002-9947-1974-0335499-1
Reference: [13] Mahdou N.: On Costa's conjecture.Comm. Algebra 29 (2001), no. 7, 2775–2785. 10.1081/AGB-4986
Reference: [14] Mahdou N.: On $2$-von Neumann regular rings.Comm. Algebra 33 (2005), no. 10, 3489–3496. Zbl 1080.13004, 10.1080/00927870500242991
Reference: [15] Palmér I., Roos J.-E.: Explicit formulae for the global homological dimensions of trivial extensions of rings.J. Algebra 27 (1973), 380–413. 10.1016/0021-8693(73)90113-0
Reference: [16] Rotman J. J.: An Introduction to Homological Algebra.Pure and Applied Mathematics, 85, Academic Press, Harcourt Brace Jovanovich, New York, 1979. Zbl 1157.18001
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-3_1.pdf 179.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo