Previous |  Up |  Next

Article

Title: Some interpretations of the $(k,p)$-Fibonacci numbers (English)
Author: Paja, Natalia
Author: Włoch, Iwona
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 3
Year: 2021
Pages: 297-307
Summary lang: English
.
Category: math
.
Summary: In this paper we consider two parameters generalization of the Fibonacci numbers and Pell numbers, named as the $(k,p)$-Fibonacci numbers. We give some new interpretations of these numbers. Moreover using these interpretations we prove some identities for the $(k,p)$-Fibonacci numbers. (English)
Keyword: Fibonacci number
Keyword: Pell number
Keyword: tiling
MSC: 05A19
MSC: 05C15
MSC: 11B39
MSC: 11B83
idMR: MR4331284
DOI: 10.14712/1213-7243.2021.026
.
Date available: 2021-10-18T08:31:09Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149146
.
Reference: [1] Bednarz N.: On $(k,p)$-Fibonacci numbers.Mathematics 9 (2021), no. 7, page 727. 10.3390/math9070727
Reference: [2] Bednarz N., Włoch A., Włoch I.: The Fibonacci numbers in edge coloured unicyclic graphs.Util. Math. 106 (2018), 39–49.
Reference: [3] Bednarz U., Bród D., Szynal-Liana A., Włoch I., Wołowiec-Musiał M.: On Fibonacci numbers in edge coloured trees.Opuscula Math. 37 (2017), no. 4, 479–490. 10.7494/OpMath.2017.37.4.479
Reference: [4] Bednarz U., Włoch I.: Fibonacci and telephone numbers in extremal trees.Discuss. Math. Graph Theory 38 (2018), no. 1, 121–133. 10.7151/dmgt.1997
Reference: [5] Bednarz U., Włoch I., Wołowiec-Musiał M.: Total graph interpretation of the numbers of the Fibonacci type.J. Appl. Math. (2015), Art. ID 837917, 7 pages.
Reference: [6] Berge C.: Principles of Combinatorics.translated from the French Mathematics in Science and Engineering, 72, Academic Press, New York, 1971.
Reference: [7] Catarino P.: On some identities and generating functions for $k$-Pell numbers.Int. J. Math. Anal. (Ruse) 7(2013), no. 37–40, 1877–1884. 10.12988/ijma.2013.35131
Reference: [8] Diestel R.: Graph Theory.Graduate Texts in Mathematics, 173, Springer, Berlin, 2005. Zbl 1218.05001
Reference: [9] Falcón S., Plaza Á.: On the Fibonacci $k$-numbers.Chaos Solitons Fractals 32 (2007), no. 5, 1615–1624. 10.1016/j.chaos.2006.09.022
Reference: [10] Kiliç E.: The generalized Pell $(p, i)$-numbers and their Binet formulas, combinatorial representations, sums.Chaos Solitons Fractals 40 (2009), no. 4, 2047–2063. 10.1016/j.chaos.2007.09.081
Reference: [11] Koshy T.: Pell and Pell-Lucas Numbers with Applications.Springer, New York, 2014.
Reference: [12] Kwaśnik M., Włoch I.: The total number of generalized stable sets and kernels of graphs.Ars Combin. 55 (2000), 139–146.
Reference: [13] Marques D., Trojovský P.: On characteristic polynomial of higher order generalized Jacobsthal numbers.Adv. Difference Equ. (2019), Paper No. 392, 9 pages.
Reference: [14] Miles E. P., Jr.: Generalized Fibonacci numbers and associated matrices.Amer. Math. Monthly 67 (1960), 745–752. 10.1080/00029890.1960.11989593
Reference: [15] Stakhov A. P.: An Introduction to the Algorithmic Theory of Measurement.Sovetskoe Radio, Moscow, 1977 (Russian).
Reference: [16] Prodinger H., Tichy R. F.: Fibonacci numbers of graphs.Fibonacci Quart. 20 (1982), no. 1, 16–21.
Reference: [17] Włoch I.: On generalized Pell numbers and their graph representations.Comment. Math. 48 (2008), no. 2, 169–175.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-3_4.pdf 206.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo