Title:
|
Some interpretations of the $(k,p)$-Fibonacci numbers (English) |
Author:
|
Paja, Natalia |
Author:
|
Włoch, Iwona |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
62 |
Issue:
|
3 |
Year:
|
2021 |
Pages:
|
297-307 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we consider two parameters generalization of the Fibonacci numbers and Pell numbers, named as the $(k,p)$-Fibonacci numbers. We give some new interpretations of these numbers. Moreover using these interpretations we prove some identities for the $(k,p)$-Fibonacci numbers. (English) |
Keyword:
|
Fibonacci number |
Keyword:
|
Pell number |
Keyword:
|
tiling |
MSC:
|
05A19 |
MSC:
|
05C15 |
MSC:
|
11B39 |
MSC:
|
11B83 |
idMR:
|
MR4331284 |
DOI:
|
10.14712/1213-7243.2021.026 |
. |
Date available:
|
2021-10-18T08:31:09Z |
Last updated:
|
2023-10-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149146 |
. |
Reference:
|
[1] Bednarz N.: On $(k,p)$-Fibonacci numbers.Mathematics 9 (2021), no. 7, page 727. 10.3390/math9070727 |
Reference:
|
[2] Bednarz N., Włoch A., Włoch I.: The Fibonacci numbers in edge coloured unicyclic graphs.Util. Math. 106 (2018), 39–49. |
Reference:
|
[3] Bednarz U., Bród D., Szynal-Liana A., Włoch I., Wołowiec-Musiał M.: On Fibonacci numbers in edge coloured trees.Opuscula Math. 37 (2017), no. 4, 479–490. 10.7494/OpMath.2017.37.4.479 |
Reference:
|
[4] Bednarz U., Włoch I.: Fibonacci and telephone numbers in extremal trees.Discuss. Math. Graph Theory 38 (2018), no. 1, 121–133. 10.7151/dmgt.1997 |
Reference:
|
[5] Bednarz U., Włoch I., Wołowiec-Musiał M.: Total graph interpretation of the numbers of the Fibonacci type.J. Appl. Math. (2015), Art. ID 837917, 7 pages. |
Reference:
|
[6] Berge C.: Principles of Combinatorics.translated from the French Mathematics in Science and Engineering, 72, Academic Press, New York, 1971. |
Reference:
|
[7] Catarino P.: On some identities and generating functions for $k$-Pell numbers.Int. J. Math. Anal. (Ruse) 7(2013), no. 37–40, 1877–1884. 10.12988/ijma.2013.35131 |
Reference:
|
[8] Diestel R.: Graph Theory.Graduate Texts in Mathematics, 173, Springer, Berlin, 2005. Zbl 1218.05001 |
Reference:
|
[9] Falcón S., Plaza Á.: On the Fibonacci $k$-numbers.Chaos Solitons Fractals 32 (2007), no. 5, 1615–1624. 10.1016/j.chaos.2006.09.022 |
Reference:
|
[10] Kiliç E.: The generalized Pell $(p, i)$-numbers and their Binet formulas, combinatorial representations, sums.Chaos Solitons Fractals 40 (2009), no. 4, 2047–2063. 10.1016/j.chaos.2007.09.081 |
Reference:
|
[11] Koshy T.: Pell and Pell-Lucas Numbers with Applications.Springer, New York, 2014. |
Reference:
|
[12] Kwaśnik M., Włoch I.: The total number of generalized stable sets and kernels of graphs.Ars Combin. 55 (2000), 139–146. |
Reference:
|
[13] Marques D., Trojovský P.: On characteristic polynomial of higher order generalized Jacobsthal numbers.Adv. Difference Equ. (2019), Paper No. 392, 9 pages. |
Reference:
|
[14] Miles E. P., Jr.: Generalized Fibonacci numbers and associated matrices.Amer. Math. Monthly 67 (1960), 745–752. 10.1080/00029890.1960.11989593 |
Reference:
|
[15] Stakhov A. P.: An Introduction to the Algorithmic Theory of Measurement.Sovetskoe Radio, Moscow, 1977 (Russian). |
Reference:
|
[16] Prodinger H., Tichy R. F.: Fibonacci numbers of graphs.Fibonacci Quart. 20 (1982), no. 1, 16–21. |
Reference:
|
[17] Włoch I.: On generalized Pell numbers and their graph representations.Comment. Math. 48 (2008), no. 2, 169–175. |
. |