Previous |  Up |  Next

Article

Title: Pre-derivations and description of non-strongly nilpotent filiform Leibniz algebras (English)
Author: Abdurasulov, K.K.
Author: Khudoyberdiyev, A.Kh.
Author: Ladra, M.
Author: Sattarov, A.M.
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 2
Year: 2021
Pages: 187-213
Summary lang: English
.
Category: math
.
Summary: In this paper we give the description of some non-strongly nilpotent Leibniz algebras. We pay our attention to the subclass of nilpotent Leibniz algebras, which is called filiform. Note that the set of filiform Leibniz algebras of fixed dimension can be decomposed into three disjoint families. We describe the pre-derivations of filiform Leibniz algebras for the first and second families and determine those algebras in the first two classes of filiform Leibniz algebras that are non-strongly nilpotent. (English)
Keyword: Lie algebra
Keyword: Leibniz algebra
Keyword: derivation
Keyword: pre-derivation
Keyword: nilpotency
Keyword: characteristically nilpotent algebra
Keyword: strongly nilpotent algebra
MSC: 17A32
MSC: 17A36
MSC: 17B30
idZBL: Zbl 07426418
idMR: MR4285751
.
Date available: 2021-11-04T12:13:03Z
Last updated: 2021-12-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149189
.
Reference: [1] Albeverio, S., Ayupov, Sh.A., Omirov, B.A., Khudoyberdiyev, A.Kh.: $n$-dimensional filiform Leibniz algebras of length $(n-1)$ and their derivations.J. Algebra, 319, 6, 2008, 2471-2488, 10.1016/j.jalgebra.2007.12.014
Reference: [2] Ancochea, J.M., Campoamor, R.: Characteristically Nilpotent Lie Algebras: A Survey.Extracta Math., 2, 2001, 153-210,
Reference: [3] Ayupov, Sh.A., Omirov, B.A.: On some classes of nilpotent Leibniz algebras.Siberian Math. J., 42, 1, 2001, 15-24, 10.1023/A:1004829123402
Reference: [4] Bajo, I.: Lie algebras admitting non-singular prederivations.Indag. Mathem., 8, 4, 1997, 433-437,
Reference: [5] Burde, D.: Characteristically nilpotent Lie algebras and symplectic structures.Forum Math., 18, 5, 2006, 769-787, Zbl 1206.17009, 10.1515/FORUM.2006.038
Reference: [6] Burde, D.: Lie algebra prederivations and strongly nilpotent Lie algebras.Comm. Algebra, 30, 7, 2002, 3157-3175, 10.1081/AGB-120004482
Reference: [7] Castro-Jiménez, F.J., Núñez Valdés, J.: On characteristically nilpotent filiform Lie algebras of dimension $9$.Comm. Algebra, 23, 8, 1995, 3059-3071,
Reference: [8] Dixmier, J., Lister, W.G.: Derivations of nilpotent Lie algebras.Proc. Amer. Math. Soc., 8, 1957, 155-158,
Reference: [9] Fialowski, A., Khudoyberdiyev, A.Kh., B.A.Omirov: A characterization of nilpotent Leibniz algebras.Algebr. Represent. Theory, 16, 5, 2013, 1489-1505, 10.1007/s10468-012-9373-z
Reference: [10] Gómez, J.R., Jiménez-Merchán, A., Khakimdjanov, Y.: Low-dimensional filiform Lie algebras.J. Pure Appl. Algebra, 130, 2, 1998, 133-158,
Reference: [11] Gómez, J.R., Omirov, B.A.: On classification of complex filiform Leibniz algebras.Algebra Colloquium, 22, 1, 2015, 757-774, 10.1142/S1005386715000668
Reference: [12] Hilton, P., Pedersen, J.: Catalan numbers, their generalization, and their uses.Math. Intelligencer, 13, 2, 1991, 64-75, 10.1007/BF03024089
Reference: [13] Jacobson, N.: A note on automorphisms and derivations of Lie algebras.Proc. Amer. Math. Soc., 6, 1955, 281-283, 10.1090/S0002-9939-1955-0068532-9
Reference: [14] Kaygorodov, I., Popov, Yu.: Alternative algebras admitting derivations with invertible values and invertible derivations.Izv. Math., 78, 5, 2014, 922-935, 10.1070/IM2014v078n05ABEH002713
Reference: [15] Kaygorodov, I., Popov, Yu.: A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations.J. Algebra, 456, 2016, 323-347, 10.1016/j.jalgebra.2016.02.016
Reference: [16] Khakimdzhanov, Yu.B.: Characteristically nilpotent Lie algebras.Math. USSR, Sb., 70, 1, 1991, 65-78, 10.1070/SM1991v070n01ABEH001378
Reference: [17] Khakimdzhanov, Yu.B.: Variété des lois d'algèbres de Lie nilpotentes.Geom. Dedicata, 40, 3, 1991, 269-295,
Reference: [18] Khudoyberdiyev, A.Kh., Ladra, M., Omirov, B.A.: The classification of non-characteristically nilpotent Leibniz algebras.Algebr. Represent. Theory, 17, 3, 2014, 945-969, 10.1007/s10468-013-9426-y
Reference: [19] Leger, G., Tôgô, S.: Characteristically nilpotent Lie algebras.Duke Math. J., 26, 4, 1959, 623-628, 10.1215/S0012-7094-59-02660-2
Reference: [20] Ladra, M., Rikhsiboev, I.M., Turdibaev, R.M.: Automorphisms and derivations of Leibniz algebras.Ukr. Math. J., 68, 7, 2016, 1062-1076, 10.1007/s11253-016-1277-3
Reference: [21] Loday, J.-L.: Une version non commutative des algèbres de Leibniz.Enseign. Math., 39, 3-4, 1993, 269-293,
Reference: [22] Moens, W.A.: A characterisation of nilpotent Lie algebras by invertible Leibniz-derivations.Comm. Algebra, 41, 2013, 2427-2440, 10.1080/00927872.2012.659101
Reference: [23] Muller, D.: Isometries of bi-invariant pseudo-Riemannian metrics on Lie groups.Geom. Dedicata, 29, 1, 1989, 65-96, 10.1007/BF00147471
Reference: [24] Omirov, B.A.: On derivations of filiform Leibniz algebras.Math. Notes, 77, 5--6, 2005, 677-685, 10.1007/s11006-005-0068-1
Reference: [25] Omirov, B.A., Rakhimov, I.S.: On Lie-like complex filiform Leibniz algebras.Bull. Aust. Math. Soc., 79, 3, 2009, 391-404, 10.1017/S000497270900001X
Reference: [26] Rakhimov, I.S., Sozan, J.: Description of nine dimensional complex filiform Leibniz algebras arising from naturally graded non Lie filiform Leibniz algebras.Int. J. Algebra, 3, 17-20, 2009, 969-980,
.

Files

Files Size Format View
ActaOstrav_29-2021-2_4.pdf 360.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo