Previous |  Up |  Next

Article

Title: Unified computational approach to nilpotent algebra classification problems (English)
Author: Kadyrov, Shirali
Author: Mashurov, Farukh
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 2
Year: 2021
Pages: 215-226
Summary lang: English
.
Category: math
.
Summary: In this article, we provide an algorithm with Wolfram Mathematica code that gives a unified computational power in classification of finite dimensional nilpotent algebras using Skjelbred-Sund method. To illustrate the code, we obtain new finite dimensional Moufang algebras. (English)
Keyword: Algebra
Keyword: Skjelbred-Sund classification
Keyword: finite dimensional nilpotent algebra
Keyword: Wolfram Mathematica
Keyword: symbolic solver
Keyword: algorithm
MSC: 17A30
MSC: 68W30
idZBL: Zbl 07426419
idMR: MR4285752
.
Date available: 2021-11-04T12:14:41Z
Last updated: 2021-12-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149190
.
Reference: [1] Abdelwahab, H., Calderón, A.J., Kaygorodov, I.: The algebraic and geometric classification of nilpotent binary Lie algebras.International Journal of Algebra and Computation, 29, 6, 2019, 1113-1129, MR 3996987, 10.1142/S0218196719500437
Reference: [2] Camacho, L., Kaygorodov, I., Lopatkin, V., Salim, M.: The variety of dual Mock-Lie algebras.Communications in Mathematics, 28, 2, 2020, 161-178, 10.2478/cm-2020-0019
Reference: [3] Cicalò, S., Graaf, W. De, Schneider, C.: Six-dimensional nilpotent Lie algebras.Linear Algebra and its Applications, 436, 1, 2012, 163-189, 10.1016/j.laa.2011.06.037
Reference: [4] Calderón, A.J., Ouaridi, A.F., Kaygorodov, I.: On the classification of bilinear maps with radical of a fixed codimension.Linear and Multilinear Algebra, 2020, 1-24, DOI: 10.1080/03081087.2020.1849001. 10.1080/03081087.2020.1849001
Reference: [5] Jumaniyozov, D., Kaygorodov, I., Khudoyberdiyev, A.: The algebraic and geometric classification of nilpotent noncommutative Jordan algebras.Journal of Algebra and its Applications, 2020, DOI: 10.1142/S0219498821502029. 10.1142/S0219498821502029
Reference: [6] Graaf, W. De: Classification of nilpotent associative algebras of small dimension.International Journal of Algebra and Computation, 28, 1, 2018, 133-161, 10.1142/S0218196718500078
Reference: [7] Gorshkov, I., Kaygorodov, I., Khrypchenko, M.: The algebraic classification of nilpotent Tortkara algebras.Communications in Algebra, 48, 8, 2020, 3608-3623,
Reference: [8] Gorshkov, I., Kaygorodov, I., Kytmanov, A., Salim, M.: The variety of nilpotent Tortkara algebras. Journal of Siberian Federal University. Mathematics & Physics, 12, 2, 2019, 173-184, 10.17516/1997-1397-2019-12-2-173-184
Reference: [9] Goze, M., Remm, E.: 2-dimensional algebras.African Journal Of Mathematical Physics, 10, 2, 2011, 81-91,
Reference: [10] Hegazi, A.S., Abdelwahab, H.: Classification of five-dimensional nilpotent Jordan algebras.Linear Algebra and its Applications, 494, 2016, 165-218, 10.1016/j.laa.2016.01.015
Reference: [11] Hegazi, A.S., Abdelwahab, H.: The classification of n-dimensional non-associative Jordan algebras with $(n-3)$-dimensional annihilator.Communications in Algebra, 46, 2, 2018, 629-643, 10.1080/00927872.2017.1327052
Reference: [12] Hegazi, A.S., Abdelwahab, H., Martin, A.J. Calderón: The classification of n-dimensional non-Lie Malcev algebras with $(n-4)$-dimensional annihilator.Linear Algebra and its Applications, 505, 2016, 32-56, 10.1016/j.laa.2016.04.029
Reference: [13] Ismailov, N., Kaygorodov, I., Mashurov, F.: The Algebraic and Geometric Classification of Nilpotent Assosymmetric Algebras.Algebras and Representation Theory, 24, 2021, 135-148, 10.1007/s10468-019-09935-y
Reference: [14] Kadyrov, S., Mashurov, F.: Nilpotent algebra classifier code.2020, https://www.wolframcloud.com/obj/39e8169f-8fbf-4540-aa65-4b01f187f63f.
Reference: [15] Karimjanov, I., Kaygorodov, I., Khudoyberdiyev, A.: The algebraic and geometric classification of nilpotent Novikov algebras.Journal of Geometry and Physics, 143, 2019, 11-21, 10.1016/j.geomphys.2019.04.016
Reference: [16] Kaygorodov, I., Páez-Guillán, M.P., Voronin, V.: The algebraic and geometric classification of nilpotent bicommutative algebras.Algebras and Representation Theory , 23, 2020, 2331-2347,
Reference: [17] Kaygorodov, I., Volkov, Yu.: The variety of 2-dimensional algebras over an algebraically closed field.Canadian Journal of Mathematics , 71, 4, 2019, 819-842, 10.4153/S0008414X18000056
Reference: [18] Loginov, E. K.: Embedding of Strongly Simple Moufang Loops In Simple Alternative Algebras.Mathematical Notes , 54, 6, 1993, 1230-1235, 10.1007/BF01209084
Reference: [19] Mashurov, F., Kaygorodov, I.: One-generated nilpotent assosymmetric algebras.Journal of Algebra and Its Applications, 2020, DOI: 10.1142/S0219498822500311. 10.1142/S0219498822500311
Reference: [20] Shestakov, I., Pérez-Izquierdo, J.M.: An envelope for Malcev algebras.Journal of Algebra, 272, 1, 2004, 379-393, 10.1016/S0021-8693(03)00389-2
Reference: [21] Skjelbred, T., Sund, T.: On the classification of nilpotent Lie algebras.Preprint series. Pure Mathematics, 1977, http://urn.nb.no/URN:NBN:no-48289.
Reference: [22] Zinbiel, G.W.: Encyclopedia of types of algebras 2010.Proceedings of the International Conference in Nankai Series in Pure Applied Mathematics and Theoretical Physics, 9, 2012, 217298,
.

Files

Files Size Format View
ActaOstrav_29-2021-2_5.pdf 377.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo