| Title:
             | 
Unified computational approach to nilpotent algebra classification problems (English) | 
| Author:
             | 
Kadyrov, Shirali | 
| Author:
             | 
Mashurov, Farukh | 
| Language:
             | 
English | 
| Journal:
             | 
Communications in Mathematics | 
| ISSN:
             | 
1804-1388 (print) | 
| ISSN:
             | 
2336-1298 (online) | 
| Volume:
             | 
29 | 
| Issue:
             | 
2 | 
| Year:
             | 
2021 | 
| Pages:
             | 
215-226 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this article, we provide an algorithm with Wolfram Mathematica code that gives a unified computational power in classification of finite dimensional nilpotent algebras using Skjelbred-Sund method. To illustrate the code, we obtain new finite dimensional Moufang algebras. (English) | 
| Keyword:
             | 
Algebra | 
| Keyword:
             | 
Skjelbred-Sund classification | 
| Keyword:
             | 
finite dimensional nilpotent algebra | 
| Keyword:
             | 
Wolfram Mathematica | 
| Keyword:
             | 
symbolic solver | 
| Keyword:
             | 
algorithm | 
| MSC:
             | 
17A30 | 
| MSC:
             | 
68W30 | 
| idZBL:
             | 
Zbl 07426419 | 
| idMR:
             | 
MR4285752 | 
| . | 
| Date available:
             | 
2021-11-04T12:14:41Z | 
| Last updated:
             | 
2021-12-01 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/149190 | 
| . | 
| Reference:
             | 
[1] Abdelwahab, H., Calderón, A.J., Kaygorodov, I.: The algebraic and geometric classification of nilpotent binary Lie algebras.International Journal of Algebra and Computation, 29, 6, 2019, 1113-1129,  MR 3996987, 10.1142/S0218196719500437 | 
| Reference:
             | 
[2] Camacho, L., Kaygorodov, I., Lopatkin, V., Salim, M.: The variety of dual Mock-Lie algebras.Communications in Mathematics, 28, 2, 2020, 161-178,  10.2478/cm-2020-0019 | 
| Reference:
             | 
[3] Cicalò, S., Graaf, W. De, Schneider, C.: Six-dimensional nilpotent Lie algebras.Linear Algebra and its Applications, 436, 1, 2012, 163-189,  10.1016/j.laa.2011.06.037 | 
| Reference:
             | 
[4] Calderón, A.J., Ouaridi, A.F., Kaygorodov, I.: On the classification of bilinear maps with radical of a fixed codimension.Linear and Multilinear Algebra, 2020, 1-24, DOI: 10.1080/03081087.2020.1849001.  10.1080/03081087.2020.1849001 | 
| Reference:
             | 
[5] Jumaniyozov, D., Kaygorodov, I., Khudoyberdiyev, A.: The algebraic and geometric classification of nilpotent noncommutative Jordan algebras.Journal of Algebra and its Applications, 2020, DOI: 10.1142/S0219498821502029.  10.1142/S0219498821502029 | 
| Reference:
             | 
[6] Graaf, W. De: Classification of nilpotent associative algebras of small dimension.International Journal of Algebra and Computation, 28, 1, 2018, 133-161,  10.1142/S0218196718500078 | 
| Reference:
             | 
[7] Gorshkov, I., Kaygorodov, I., Khrypchenko, M.: The algebraic classification of nilpotent Tortkara algebras.Communications in Algebra, 48, 8, 2020, 3608-3623, | 
| Reference:
             | 
[8] Gorshkov, I., Kaygorodov, I., Kytmanov, A., Salim, M.: The variety of nilpotent Tortkara algebras. Journal of Siberian Federal University. Mathematics & Physics, 12, 2, 2019, 173-184,  10.17516/1997-1397-2019-12-2-173-184 | 
| Reference:
             | 
[9] Goze, M., Remm, E.: 2-dimensional algebras.African Journal Of Mathematical Physics, 10, 2, 2011, 81-91, | 
| Reference:
             | 
[10] Hegazi, A.S., Abdelwahab, H.: Classification of five-dimensional nilpotent Jordan algebras.Linear Algebra and its Applications, 494, 2016, 165-218,  10.1016/j.laa.2016.01.015 | 
| Reference:
             | 
[11] Hegazi, A.S., Abdelwahab, H.: The classification of n-dimensional non-associative Jordan algebras with $(n-3)$-dimensional annihilator.Communications in Algebra, 46, 2, 2018, 629-643,  10.1080/00927872.2017.1327052 | 
| Reference:
             | 
[12] Hegazi, A.S., Abdelwahab, H., Martin, A.J. Calderón: The classification of n-dimensional non-Lie Malcev algebras with $(n-4)$-dimensional annihilator.Linear Algebra and its Applications, 505, 2016, 32-56,  10.1016/j.laa.2016.04.029 | 
| Reference:
             | 
[13] Ismailov, N., Kaygorodov, I., Mashurov, F.: The Algebraic and Geometric Classification of Nilpotent Assosymmetric Algebras.Algebras and Representation Theory, 24, 2021, 135-148,  10.1007/s10468-019-09935-y | 
| Reference:
             | 
[14] Kadyrov, S., Mashurov, F.: Nilpotent algebra classifier code.2020, https://www.wolframcloud.com/obj/39e8169f-8fbf-4540-aa65-4b01f187f63f. | 
| Reference:
             | 
[15] Karimjanov, I., Kaygorodov, I., Khudoyberdiyev, A.: The algebraic and geometric classification of nilpotent Novikov algebras.Journal of Geometry and Physics, 143, 2019, 11-21,  10.1016/j.geomphys.2019.04.016 | 
| Reference:
             | 
[16] Kaygorodov, I., Páez-Guillán, M.P., Voronin, V.: The algebraic and geometric classification of nilpotent bicommutative algebras.Algebras and Representation Theory , 23, 2020, 2331-2347, | 
| Reference:
             | 
[17] Kaygorodov, I., Volkov, Yu.: The variety of 2-dimensional algebras over an algebraically closed field.Canadian Journal of Mathematics , 71, 4, 2019, 819-842,  10.4153/S0008414X18000056 | 
| Reference:
             | 
[18] Loginov, E. K.: Embedding of Strongly Simple Moufang Loops In Simple Alternative Algebras.Mathematical Notes , 54, 6, 1993, 1230-1235,  10.1007/BF01209084 | 
| Reference:
             | 
[19] Mashurov, F., Kaygorodov, I.: One-generated nilpotent assosymmetric algebras.Journal of Algebra and Its Applications, 2020, DOI: 10.1142/S0219498822500311.  10.1142/S0219498822500311 | 
| Reference:
             | 
[20] Shestakov, I., Pérez-Izquierdo, J.M.: An envelope for Malcev algebras.Journal of Algebra, 272, 1, 2004, 379-393,  10.1016/S0021-8693(03)00389-2 | 
| Reference:
             | 
[21] Skjelbred, T., Sund, T.: On the classification of nilpotent Lie algebras.Preprint series. Pure Mathematics, 1977, http://urn.nb.no/URN:NBN:no-48289. | 
| Reference:
             | 
[22] Zinbiel, G.W.: Encyclopedia of types of algebras 2010.Proceedings of the International Conference in Nankai Series in Pure Applied Mathematics and Theoretical Physics, 9, 2012, 217298, | 
| . |