Previous |  Up |  Next

Article

Title: Properties of unique information (English)
Author: Rauh, Johannes
Author: Schünemann, Maik
Author: Jost, Jürgen
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 3
Year: 2021
Pages: 383-403
Summary lang: English
.
Category: math
.
Summary: We study the unique information function $UI(T:X\setminus Y)$ defined by Bertschinger et al. within the framework of information decompositions. In particular, we study uniqueness and support of the solutions to the convex optimization problem underlying the definition of $UI$. We identify sufficient conditions for non-uniqueness of solutions with full support in terms of conditional independence constraints and in terms of the cardinalities of $T$, $X$ and $Y$. Our results are based on a reformulation of the first order conditions on the objective function as rank constraints on a matrix of conditional probabilities. These results help to speed up the computation of $UI(T:X\setminus Y)$, most notably when $T$ is binary. Optima in the relative interior of the optimization domain are solutions of linear equations if $T$ is binary. In the all binary case, we obtain a complete picture of where the optimizing probability distributions lie. (English)
Keyword: information decomposition
Keyword: unique information
MSC: 94A15
MSC: 94A17
idZBL: Zbl 07442516
idMR: MR4299455
DOI: 10.14736/kyb-2021-3-0383
.
Date available: 2021-11-04T12:41:10Z
Last updated: 2022-02-24
Stable URL: http://hdl.handle.net/10338.dmlcz/149197
.
Reference: [1] Amari, Shun-ichi, Nagaoka, Hiroshi: Methods of Information Geometry..American Mathematical Society 2000.
Reference: [2] Banerjee, P. Kr., Olbrich, E., Jost, J., Rauh, J.: Unique informations and deficiencies..In: Proc. Allerton, 2018.
Reference: [3] Banerjee, P. Kr., Rauh, J., Montúfar, G.: Computing the unique information..In: Proc. IEEE ISIT 2018, pp. 141-145
Reference: [4] Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., Ay, N.: Quantifying unique information..Entropy 16 (2014), 4, 2161-2183.
Reference: [5] Diaconis, Persi, Sturmfels, Bernd: Algebraic algorithms for sampling from conditional distributions..Ann. Statist. 26 (1998), 363-397.
Reference: [6] Fink, A.: The binomial ideal of the intersection axiom for conditional probabilities..J. Algebr. Combin. 33 (2011), 3, 455-463.
Reference: [7] Finn, C., Lizier, J. T.: Pointwise partial information decomposition using the specificity and ambiguity lattices..Entropy 20 (2018), 4, 297.
Reference: [8] Harder, M., Salge, Ch., Polani, D.: A bivariate measure of redundant information..Phys. Rev. E 87 (2013), 012130.
Reference: [9] Ince, R.: Measuring multivariate redundant information with pointwise common change in surprisal..Entropy 19 (2017), 7, 318.
Reference: [10] James, R., Emenheiser, J., Crutchfield, J.: Unique information via dependency constraints..J. Physics A 52 (2018), 1, 014002.
Reference: [11] Makkeh, A., Theis, D. O., Vicente, R.: Bivariate partial information decomposition: The optimization perspective..Entropy 19 (2017), 10, 530.
Reference: [12] Niu, X., Quinn, Ch.: A measure of synergy, redundancy, and unique information using information geometry..In: Proc. IEEE ISIT 2019.
Reference: [13] Rauh, J., Banerjee, P. Kr., Olbrich, E., Jost, J.: Unique information and secret key decompositions..In: 2019 IEEE International Symposium on Information Theory (ISIT), pp. 3042-3046.
Reference: [14] Rauh, J., Ay, N.: Robustness, canalyzing functions and systems design..Theory Biosciences 133 (2014), 2, 63-78.
Reference: [15] Rauh, J., Bertschinger, N., Olbrich, E., Jost, J.: Reconsidering unique information: Towards a multivariate information decomposition..In: Proc. IEEE ISIT 2014, pp. 2232-2236.
Reference: [16] Smith, N. A., R, Tromble, W.: Sampling Uniformly from the Unit Simplex..Technical Report 29, Johns Hopkins University 29, 2004.
Reference: [17] Williams, P., Beer, R.: Nonnegative decomposition of multivariate information..arXiv:1004.2515v1.
.

Files

Files Size Format View
Kybernetika_57-2021-3_1.pdf 587.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo