Previous |  Up |  Next

Article

Title: On the distribution of $(k,r)$-integers in Piatetski-Shapiro sequences (English)
Author: Srichan, Teerapat
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 4
Year: 2021
Pages: 1063-1070
Summary lang: English
.
Category: math
.
Summary: A natural number $n$ is said to be a $(k,r)$-integer if $n=a^kb$, where $k>r>1$ and $b$ is not divisible by the $r$th power of any prime. We study the distribution of such $(k,r)$-integers in the Piatetski-Shapiro sequence $\{\lfloor n^c \rfloor \}$ with $c>1$. As a corollary, we also obtain similar results for semi-$r$-free integers. (English)
Keyword: $(k,r)$-integer
Keyword: Piatetski-Shapiro sequence
MSC: 11L07
MSC: 11N37
idZBL: Zbl 07442474
idMR: MR4339111
DOI: 10.21136/CMJ.2021.0194-20
.
Date available: 2021-11-08T16:00:55Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149238
.
Reference: [1] Cao, X., Zhai, W.: The distribution of square-free numbers of the form $[n^c]$.J. Théor. Nombres Bordx. 10 (1998), 287-299. Zbl 0926.11066, MR 1828246, 10.5802/jtnb.229
Reference: [2] Cao, X., Zhai, W.: On the distribution of square-free numbers of the form $[n^c]$. II.Acta Math. Sin., Chin. Ser. 51 (2008), 1187-1194 Chinese. Zbl 1174.11395, MR 2490038
Reference: [3] Deshouillers, J.-M.: A remark on cube-free numbers in Segal-Piatetski-Shapiro sequences.Hardy-Ramanujan J. 41 (2018), 127-132. Zbl 1448.11055, MR 3935505
Reference: [4] Ivić, A.: The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function.A Wiley-Interscience Publication. John Wiley & Sons, New York (1985). Zbl 0556.10026, MR 792089
Reference: [5] Piatetski-Shapiro, I. I.: On the distribution of prime numbers in sequences of the form $[f(n)]$.Mat. Sb., N.Ser. 33 (1953), 559-566 Russian. Zbl 0053.02702, MR 0059302
Reference: [6] Rieger, G. J.: Remark on a paper of Stux concerning squarefree numbers in non-linear sequences.Pac. J. Math. 78 (1978), 241-242. Zbl 0395.10049, MR 513296, 10.2140/pjm.1978.78.241
Reference: [7] Stux, I. E.: Distribution of squarefree integers in non-linear sequences.Pac. J. Math. 59 (1975), 577-584. Zbl 0297.10033, MR 387218, 10.2140/pjm.1975.59.577
Reference: [8] Subbarao, M. V., Suryanarayana, D.: On the order of the error function of the $(k,r)$integers.J. Number Theory 6 (1974), 112-123. Zbl 0277.10036, MR 0335454, 10.1016/0022-314X(74)90049-3
Reference: [9] Zhang, M., Li, J.: Distribution of cube-free numbers with form $[n^c]$.Front. Math. China 12 (2017), 1515-1525. Zbl 1418.11137, MR 3722230, 10.1007/s11464-017-0652-1
.

Files

Files Size Format View
CzechMathJ_71-2021-4_11.pdf 206.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo