Previous |  Up |  Next

Article

Title: Fiedler vectors with unbalanced sign patterns (English)
Author: Kim, Sooyeong
Author: Kirkland, Steve
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 4
Year: 2021
Pages: 1071-1098
Summary lang: English
.
Category: math
.
Summary: In spectral bisection, a Fielder vector is used for partitioning a graph into two connected subgraphs according to its sign pattern. We investigate graphs having Fiedler vectors with unbalanced sign patterns such that a partition can result in two connected subgraphs that are distinctly different in size. We present a characterization of graphs having a Fiedler vector with exactly one negative component, and discuss some classes of such graphs. We also establish an analogous result for regular graphs with a Fiedler vector with exactly two negative components. In particular, we examine the circumstances under which any Fiedler vector has unbalanced sign pattern according to the number of vertices with minimum degree. (English)
Keyword: algebraic connectivity
Keyword: Fiedler vector
Keyword: minimum degree
MSC: 05C50
MSC: 15A18
idZBL: Zbl 07442475
idMR: MR4339112
DOI: 10.21136/CMJ.2021.0198-20
.
Date available: 2021-11-08T16:01:23Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149239
.
Reference: [1] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs.Universitext. Springer, New York (2012). Zbl 1231.05001, MR 2882891, 10.1007/978-1-4614-1939-6
Reference: [2] Cvetković, D., Rowlinson, P., Simić, S.: Spectral Generalizations of Line Graphs: On Graphs with Least Eigenvalue $-2$.London Mathematical Society Lecture Note Series 314. Cambridge University Press, Cambridge (2004). Zbl 1061.05057, MR 2120511, 10.1017/CBO9780511751752
Reference: [3] Cvetković, D., Simić, S.: The second largest eigenvalue of a graph (a survey).Filomat 9 (1995), 449-472. Zbl 0851.05078, MR 1385931
Reference: [4] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007, 10.21136/CMJ.1973.101168
Reference: [5] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory.Czech. Math. J. 25 (1975), 619-633. Zbl 0437.15004, MR 0387321, 10.21136/CMJ.1975.101357
Reference: [6] Kirkland, S. J., Molitierno, J. J., Neumann, M., Shader, B. L.: On graphs with equal algebraic and vertex connectivity.Linear Algebra Appl. 341 (2002), 45-56. Zbl 0991.05071, MR 1873608, 10.1016/S0024-3795(01)00312-3
Reference: [7] Merris, R.: Degree maximal graphs are Laplacian integral.Linear Algebra Appl. 199 (1994), 381-389. Zbl 0795.05091, MR 1274427, 10.1016/0024-3795(94)90361-1
Reference: [8] Merris, R.: Laplacian graph eigenvectors.Linear Algebra Appl. 278 (1998), 221-236. Zbl 0932.05057, MR 1637359, 10.1016/S0024-3795(97)10080-5
Reference: [9] Seidel, J. J.: Strongly regular graphs with $(-1,1,0)$ adjacency matrix having eigenvalue 3.Linear Algebra Appl. 1 (1968), 281-298. Zbl 0159.25403, MR 234861, 10.1016/0024-3795(68)90008-6
Reference: [10] Urschel, J. C., Zikatanov, L. T.: Spectral bisection of graphs and connectedness.Linear Algebra Appl. 449 (2014), 1-16. Zbl 1286.05101, MR 3191855, 10.1016/j.laa.2014.02.007
Reference: [11] Urschel, J. C., Zikatanov, L. T.: On the maximal error of spectral approximation of graph bisection.Linear Multilinear Algebra 64 (2016), 1972-1979. Zbl 1352.05120, MR 3521152, 10.1080/03081087.2015.1133557
.

Files

Files Size Format View
CzechMathJ_71-2021-4_12.pdf 404.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo