Previous |  Up |  Next

Article

Title: 5-dissections and sign patterns of Ramanujan's parameter and its companion (English)
Author: Chern, Shane
Author: Tang, Dazhao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 4
Year: 2021
Pages: 1115-1128
Summary lang: English
.
Category: math
.
Summary: In 1998, Michael Hirschhorn discovered the 5-dissection formulas of the Rogers-Ramanujan continued fraction $R(q)$ and its reciprocal. We obtain the 5-dissections for functions $R(q)R(q^2)^2$ and $R(q)^2/R(q^2)$, which are essentially Ramanujan's parameter and its companion. Additionally, 5-dissections of the reciprocals of these two functions are derived. These 5-dissection formulas imply that the coefficients in their series expansions have periodic sign patterns with few exceptions. (English)
Keyword: 5-dissection
Keyword: sign pattern
Keyword: Ramanujan's parameter
MSC: 11F27
MSC: 30B10
idZBL: Zbl 07442477
idMR: MR4339114
DOI: 10.21136/CMJ.2021.0218-20
.
Date available: 2021-11-08T16:02:35Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149241
.
Reference: [1] Andrews, G. E.: Ramanujan's ``lost'' notebook. III: The Rogers-Ramanujan continued fraction.Adv. Math. 41 (1981), 186-208 \99999DOI99999 10.1016/0001-8708(81)90015-3 . Zbl 0477.33009, MR 0625893, 10.1016/0001-8708(81)90015-3
Reference: [2] Andrews, G. E., Berndt, B. C.: Ramanujan's Lost Notebook. I.Springer, New York (2005). Zbl 1075.11001, MR 2135178, 10.1007/b13290
Reference: [3] Chern, S., Tang, D.: Vanishing coefficients in quotients of theta functions of modulus five.Bull. Aust. Math. Soc. 102 (2020), 387-398. Zbl 07282365, MR 4176682, 10.1017/S0004972720000271
Reference: [4] Cooper, S.: On Ramanujan's function $k(q)=r(q)r^2(q^2)$.Ramanujan J. 20 (2009), 311-328. Zbl 1239.11051, MR 2574777, 10.1007/s11139-009-9198-5
Reference: [5] Cooper, S.: Level 10 analogues of Ramanujan's series for $1/\pi$.J. Ramanujan Math. Soc. 27 (2012), 59-76. Zbl 1282.11032, MR 2933486
Reference: [6] Cooper, S.: Ramanujan's Theta Functions.Springer, Cham (2017). Zbl 1428.11001, MR 3675178, 10.1007/978-3-319-56172-1
Reference: [7] Dou, D. Q. J., Xiao, J.: The 5-dissections of two infinite product expansions.(to appear) in Ramanujan J. 10.1007/s11139-019-00200-w
Reference: [8] Frye, J., Garvan, F.: Automatic proof of theta-function identities.Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory Texts and Monographs in Symbolic Computation. Springer, Cham (2019), 195-258. MR 3889559, 10.1007/978-3-030-04480-0_10
Reference: [9] Garvan, F.: A $q$-product tutorial for a $q$-series MAPLE package.Sémin. Lothar. Comb. 42 (1999), Article ID B42d, 27 pages. Zbl 1010.11072, MR 1701583
Reference: [10] Gugg, C.: Two modular equations for squares of the Rogers-Ramanujan functions with applications.Ramanujan J. 18 (2009), 183-207. Zbl 1193.33230, MR 2475936, 10.1007/s11139-008-9121-5
Reference: [11] Hirschhorn, M. D.: On the expansion of Ramanujan's continued fraction.Ramanujan J. 2 (1998), 521-527. Zbl 0924.11005, MR 1665326, 10.1023/A:1009789012006
Reference: [12] Hirschhorn, M. D.: The Power of $q$: A Personal Journey.Developments in Mathematics 49. Springer, Cham (2017). Zbl 06722024, MR 3699428, 10.1007/978-3-319-57762-3
Reference: [13] Kang, S.-Y.: Some theorems on the Rogers-Ramanujan continued fraction and associated theta function identities in Ramanujan's Lost Notebook.Ramanujan J. 3 (1999), 91-111. Zbl 0930.11025, MR 1687021, 10.1023/A:1009869426750
Reference: [14] Raghavan, S., Rangachari, S. S.: On Ramanujan's elliptic integrals and modular identities.Number Theory and Related Topics Tata Institute of Fundamental Research Studies in Mathematics 12. Oxford University Press, Oxford (1989), 119-149. Zbl 0748.33013, MR 1441328
Reference: [15] Ramanujan, S.: Notebooks of Srinivasa Ramanujan. II.Tata Institute of Fundamental Research, Bombay (1957). Zbl 0138.24201, MR 0099904, 10.1007/978-3-662-30224-8
Reference: [16] Ramanujan, S.: The Lost Notebook and Other Unpublished Papers.Springer, Berlin; Narosa Publishing House, New Delhi (1988). Zbl 0639.01023, MR 0947735
Reference: [17] Richmond, B., Szekeres, G.: The Taylor coefficients of certain infinite products.Acta Sci. Math. 40 (1978), 347-369. Zbl 0397.10046, MR 0515217
Reference: [18] Rogers, L. J.: Second memoir on the expansion of certain infinite products.Proc. Lond. Math. Soc. 25 (1894), 318-343. MR 1576348, 10.1112/plms/s1-25.1.318
Reference: [19] Tang, D.: On 5- and 10-dissections for some infinite products.(to appear) in Ramanujan J. 10.1007/s11139-020-00340-4
Reference: [20] Tang, D., Xia, E. X. W.: Several $q$-series related to Ramanujan's theta functions.Ramanujan J. 53 (2020), 705-724. MR 4173465, 10.1007/s11139-019-00187-4
Reference: [21] Xia, E. X. W., Zhao, A. X. H.: Generalizations of Hirschhorn's results on two remarkable $q$-series expansions.(to appear) in Exp. Math. 10.1080/10586458.2020.1712565
.

Files

Files Size Format View
CzechMathJ_71-2021-4_14.pdf 231.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo