Previous |  Up |  Next

Article

Title: A variety of Euler's sum of powers conjecture (English)
Author: Cai, Tianxin
Author: Zhang, Yong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 4
Year: 2021
Pages: 1099-1113
Summary lang: English
.
Category: math
.
Summary: We consider a variety of Euler's sum of powers conjecture, i.e., whether the Diophantine system $$ \begin{cases} n=a_{1}+a_{2}+\cdots +a_{s-1},\\ a_{1}a_{2}\cdots a_{s-1}(a_{1}+a_{2}+\cdots +a_{s-1})=b^{s} \end{cases} $$ has positive integer or rational solutions $n$, $b$, $a_i$, $i=1,2,\cdots ,s-1$, $s\geq 3.$ Using the theory of elliptic curves, we prove that it has no positive integer solution for $s=3$, but there are infinitely many positive integers $n$ such that it has a positive integer solution for $s\geq 4$. As a corollary, for $s\geq 4$ and any positive integer $n$, the above Diophantine system has a positive rational solution. Meanwhile, we give conditions such that it has infinitely many positive rational solutions for $s\geq 4$ and a fixed positive integer $n$. (English)
Keyword: Euler's sum of powers conjecture
Keyword: elliptic curve
Keyword: positive integer solution
Keyword: positive rational solution
MSC: 11D41
MSC: 11D72
MSC: 11G05
idZBL: Zbl 07442476
idMR: MR4339113
DOI: 10.21136/CMJ.2021.0210-20
.
Date available: 2021-11-08T16:01:56Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149240
.
Reference: [1] Cai, T., Chen, D.: A new variant of the Hilbert-Waring problem.Math. Comput. 82 (2013), 2333-2341. Zbl 1284.11127, MR 3073204, 10.1090/s0025-5718-2013-02685-3
Reference: [2] Cai, T., Chen, D., Zhang, Y.: A new generalization of Fermat's last theorem.J. Number Theory 149 (2015), 33-45. Zbl 1369.11026, MR 3295999, 10.1016/j.jnt.2014.09.014
Reference: [3] Cohen, H.: Number Theory. Vol. I: Tools and Diophantine Equations.Graduate Texts in Mathematics 239. Springer, New York (2007). Zbl 1119.11001, MR 2312337, 10.1007/978-0-387-49923-9
Reference: [4] Elkies, N. D.: On $A^4+B^4+C^4=D^4$.Math. Comput. 184 (1988), 825-835. Zbl 0698.10010, MR 930224, 10.1090/S0025-5718-1988-0930224-9
Reference: [5] Guy, R. K.: Unsolved Problems in Number Theory.Problem Books in Mathematics. Springer, New York (2004). Zbl 1058.11001, MR 2076335, 10.1007/978-1-4899-3585-4
Reference: [6] Lander, L. J., Parkin, T. R.: Counterexample to Euler's conjecture on sums of like powers.Bull. Am. Math. Soc. 72 (1966), 1079. Zbl 0145.04903, MR 0197389, 10.1090/S0002-9904-1966-11654-3
Reference: [7] : Magma computational algebra system for algebra, number theory and geometry.Available at http://magma.maths.usyd.edu.au/magma/.
Reference: [8] Mordell, L. J.: Diophantine Equations.Pure and Applied Mathematics 30. Academic Press, London (1969). Zbl 0188.34503, MR 0249355
Reference: [9] Rowland, E. S.: Elliptic curve and integral solutions to $A^4+B^4+C^4=D^4$. (2004), 7 pages.
Reference: [10] Skolem, T.: Diophantische Gleichungen.Ergebnisse der Mathematik und ihrer Grenzgebiete 5. Springer, Berlin (1938), German. Zbl 0018.29302
Reference: [11] Ulas, M.: On some Diophantine systems involving symmetric polynomials.Math. Comput. 83 (2014), 1915-1930. Zbl 1290.11064, MR 3194135, 10.1090/S0025-5718-2013-02778-0
.

Files

Files Size Format View
CzechMathJ_71-2021-4_13.pdf 227.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo