Title:
|
The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$ (English) |
Author:
|
Rout, Sudhansu Sekhar |
Author:
|
Juyal, Abhishek |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
4 |
Year:
|
2021 |
Pages:
|
1133-1147 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $D_m$ be an elliptic curve over $\mathbb {Q}$ of the form $y^2 = x^3 -m^2x +m^2$, where $m$ is an integer. In this paper we prove that the two points $P_{-1}=(-m, m)$ and $P_0 = (0, m)$ on $D_m$ can be extended to a basis for $D_m(\mathbb {Q})$ under certain conditions described explicitly. (English) |
Keyword:
|
elliptic curve |
Keyword:
|
Mordell-Weil group |
Keyword:
|
canonical height |
MSC:
|
11D59 |
MSC:
|
11G05 |
idZBL:
|
Zbl 07442479 |
idMR:
|
MR4339116 |
DOI:
|
10.21136/CMJ.2021.0238-20 |
. |
Date available:
|
2021-11-08T16:03:42Z |
Last updated:
|
2024-01-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149243 |
. |
Reference:
|
[1] Antoniewicz, A.: On a family of elliptic curves.Univ. Iagell. Acta Math. 43 (2005), 21-32. Zbl 1116.11036, MR 2331469 |
Reference:
|
[2] Brown, E., Myers, B. T.: Elliptic curves from Mordell to Diophantus and back.Am. Math. Mon. 109 (2002), 639-649. Zbl 1083.11037, MR 1917222, 10.2307/3072428 |
Reference:
|
[3] Cannon, J., Bosma, W., Fieker, C., (eds.), A. Steel: Handbook of Magma Functions.Department of Mathematics, University of Sydney, Sydney (2006). |
Reference:
|
[4] Eikenberg, E. V.: Rational Points on Some Families of Elliptic Curves: Ph.D. Thesis.University of Maryland, College Park (2004). MR 2705712 |
Reference:
|
[5] Fujita, Y.: Generators for the elliptic curve $y^2=x^3-nx$ of rank at least three.J. Number Theory 133 (2013), 1645-1662. Zbl 1295.11060, MR 3007126, 10.1016/j.jnt.2012.10.011 |
Reference:
|
[6] Fujita, Y.: Generators for congruent number curves of ranks at least two and three.J. Ramanujan Math. Soc. 29 (2014), 307-319. Zbl 1316.11043, MR 3265063 |
Reference:
|
[7] Fujita, Y., Nara, T.: On the Mordell-Weil group of the elliptic curve $y^2=x^3+n$.J. Number Theory 132 (2012), 448-466. Zbl 1308.11059, MR 2875349, 10.1016/j.jnt.2011.09.003 |
Reference:
|
[8] Fujita, Y., Nara, T.: The Mordell-Weil bases for the elliptic curve of the form $y^2=x^3- m^2x+n^2$.Publ. Math. 92 (2018), 79-99. Zbl 1413.11081, MR 3764079, 10.5486/PMD.2018.7719 |
Reference:
|
[9] Fujita, Y., Terai, N.: Generators for the elliptic curve $y^2=x^3-nx$.J. Théor. Nombres Bordx. 23 (2011), 403-416. Zbl 1228.11081, MR 2817937, 10.5802/jtnb.769 |
Reference:
|
[10] Juyal, A., Kumar, S. D.: On the family of elliptic curves $y^2=x^3-m^2x+p^2$.Proc. Indian Acad. Sci., Math. Sci. 128 (2018), Article ID 54, 11 pages. Zbl 1448.11104, MR 3869527, 10.1007/s12044-018-0433-0 |
Reference:
|
[11] Oguiso, K., Shioda, T.: The Mordell-Weil lattice of a rational elliptic surface.Comment. Math. Univ. St. Pauli 40 (1991), 83-99. Zbl 0757.14011, MR 1104782 |
Reference:
|
[12] Shioda, T.: On the Mordell-Weil lattices.Comment. Math. Univ. St. Pauli 39 (1990), 211-240. Zbl 0725.14017, MR 1081832 |
Reference:
|
[13] Siksek, S.: Infinite descent on elliptic curves.Rocky Mt. J. Math. 25 (1995), 1501-1538. Zbl 0852.11028, MR 1371352, 10.1216/rmjm/1181072159 |
Reference:
|
[14] Silverman, J. H.: Computing heights on elliptic curves.Math. Comput. 51 (1988), 339-358. Zbl 0656.14016, MR 942161, 10.1090/S0025-5718-1988-0942161-4 |
Reference:
|
[15] Silverman, J. H.: Advanced Topics in the Arithmetic of Elliptic Curves.Graduate Texts in Mathematics 151. Springer, New York (1994). Zbl 0911.14015, MR 1312368, 10.1007/978-1-4612-0851-8 |
Reference:
|
[16] Silverman, J. H.: The Arithmetic of Elliptic Curves.Graduate Texts in Mathematics 106. Springer, New York (2009). Zbl 1194.11005, MR 2514094, 10.1007/978-0-387-09494-6 |
Reference:
|
[17] Tadić, P.: On the family of elliptic curves $Y^2=X^3-T^2X+1$.Glas. Mat., III. Ser. 47 (2012), 81-93. Zbl 1254.11057, MR 2942776, 10.3336/gm.47.1.06 |
Reference:
|
[18] Tadić, P.: The rank of certain subfamilies of the elliptic curve $Y^2=X^3-X+T^2$.Ann. Math. Inform. 40 (2012), 145-153. Zbl 1274.11109, MR 3005123 |
. |