Previous |  Up |  Next

Article

Title: The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$ (English)
Author: Rout, Sudhansu Sekhar
Author: Juyal, Abhishek
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 4
Year: 2021
Pages: 1133-1147
Summary lang: English
.
Category: math
.
Summary: Let $D_m$ be an elliptic curve over $\mathbb {Q}$ of the form $y^2 = x^3 -m^2x +m^2$, where $m$ is an integer. In this paper we prove that the two points $P_{-1}=(-m, m)$ and $P_0 = (0, m)$ on $D_m$ can be extended to a basis for $D_m(\mathbb {Q})$ under certain conditions described explicitly. (English)
Keyword: elliptic curve
Keyword: Mordell-Weil group
Keyword: canonical height
MSC: 11D59
MSC: 11G05
idZBL: Zbl 07442479
idMR: MR4339116
DOI: 10.21136/CMJ.2021.0238-20
.
Date available: 2021-11-08T16:03:42Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149243
.
Reference: [1] Antoniewicz, A.: On a family of elliptic curves.Univ. Iagell. Acta Math. 43 (2005), 21-32. Zbl 1116.11036, MR 2331469
Reference: [2] Brown, E., Myers, B. T.: Elliptic curves from Mordell to Diophantus and back.Am. Math. Mon. 109 (2002), 639-649. Zbl 1083.11037, MR 1917222, 10.2307/3072428
Reference: [3] Cannon, J., Bosma, W., Fieker, C., (eds.), A. Steel: Handbook of Magma Functions.Department of Mathematics, University of Sydney, Sydney (2006).
Reference: [4] Eikenberg, E. V.: Rational Points on Some Families of Elliptic Curves: Ph.D. Thesis.University of Maryland, College Park (2004). MR 2705712
Reference: [5] Fujita, Y.: Generators for the elliptic curve $y^2=x^3-nx$ of rank at least three.J. Number Theory 133 (2013), 1645-1662. Zbl 1295.11060, MR 3007126, 10.1016/j.jnt.2012.10.011
Reference: [6] Fujita, Y.: Generators for congruent number curves of ranks at least two and three.J. Ramanujan Math. Soc. 29 (2014), 307-319. Zbl 1316.11043, MR 3265063
Reference: [7] Fujita, Y., Nara, T.: On the Mordell-Weil group of the elliptic curve $y^2=x^3+n$.J. Number Theory 132 (2012), 448-466. Zbl 1308.11059, MR 2875349, 10.1016/j.jnt.2011.09.003
Reference: [8] Fujita, Y., Nara, T.: The Mordell-Weil bases for the elliptic curve of the form $y^2=x^3- m^2x+n^2$.Publ. Math. 92 (2018), 79-99. Zbl 1413.11081, MR 3764079, 10.5486/PMD.2018.7719
Reference: [9] Fujita, Y., Terai, N.: Generators for the elliptic curve $y^2=x^3-nx$.J. Théor. Nombres Bordx. 23 (2011), 403-416. Zbl 1228.11081, MR 2817937, 10.5802/jtnb.769
Reference: [10] Juyal, A., Kumar, S. D.: On the family of elliptic curves $y^2=x^3-m^2x+p^2$.Proc. Indian Acad. Sci., Math. Sci. 128 (2018), Article ID 54, 11 pages. Zbl 1448.11104, MR 3869527, 10.1007/s12044-018-0433-0
Reference: [11] Oguiso, K., Shioda, T.: The Mordell-Weil lattice of a rational elliptic surface.Comment. Math. Univ. St. Pauli 40 (1991), 83-99. Zbl 0757.14011, MR 1104782
Reference: [12] Shioda, T.: On the Mordell-Weil lattices.Comment. Math. Univ. St. Pauli 39 (1990), 211-240. Zbl 0725.14017, MR 1081832
Reference: [13] Siksek, S.: Infinite descent on elliptic curves.Rocky Mt. J. Math. 25 (1995), 1501-1538. Zbl 0852.11028, MR 1371352, 10.1216/rmjm/1181072159
Reference: [14] Silverman, J. H.: Computing heights on elliptic curves.Math. Comput. 51 (1988), 339-358. Zbl 0656.14016, MR 942161, 10.1090/S0025-5718-1988-0942161-4
Reference: [15] Silverman, J. H.: Advanced Topics in the Arithmetic of Elliptic Curves.Graduate Texts in Mathematics 151. Springer, New York (1994). Zbl 0911.14015, MR 1312368, 10.1007/978-1-4612-0851-8
Reference: [16] Silverman, J. H.: The Arithmetic of Elliptic Curves.Graduate Texts in Mathematics 106. Springer, New York (2009). Zbl 1194.11005, MR 2514094, 10.1007/978-0-387-09494-6
Reference: [17] Tadić, P.: On the family of elliptic curves $Y^2=X^3-T^2X+1$.Glas. Mat., III. Ser. 47 (2012), 81-93. Zbl 1254.11057, MR 2942776, 10.3336/gm.47.1.06
Reference: [18] Tadić, P.: The rank of certain subfamilies of the elliptic curve $Y^2=X^3-X+T^2$.Ann. Math. Inform. 40 (2012), 145-153. Zbl 1274.11109, MR 3005123
.

Files

Files Size Format View
CzechMathJ_71-2021-4_16.pdf 254.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo