Previous |  Up |  Next

Article

Title: A $q$-congruence for a truncated $_{4}\varphi _{3}$ series (English)
Author: Guo, Victor J. W.
Author: Wei, Chuanan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 4
Year: 2021
Pages: 1157-1165
Summary lang: English
.
Category: math
.
Summary: Let $\Phi _n(q)$ denote the $n$th cyclotomic polynomial in $q$. Recently, Guo, Schlosser and Zudilin proved that for any integer $n>1$ with $n\equiv 1\pmod {4}$, $$ \sum _{k=0}^{n-1}\frac {(q^{-1};q^2)_k^2(q^{-2};q^4)_k}{(q^2;q^2)_k^2 (q^4;q^4)_k}q^{6k} \equiv 0\pmod {\Phi _n(q)^2}, $$ where $(a;q)_m=(1-a)(1-aq)\cdots (1-aq^{m-1})$. In this note, we give a generalization of the above $q$-congruence to the modulus $\Phi _n(q)^3$ case. Meanwhile, we give a corresponding $q$-congruence modulo $\Phi _n(q)^2$ for $n\equiv 3\pmod {4}$. Our proof is based on the `creative microscoping' method, recently developed by Guo and Zudilin, and a $_4\varphi _3$ summation formula. (English)
Keyword: basic hypergeometric series
Keyword: Watson's transformation
Keyword: $q$-congruence
Keyword: supercongruence
Keyword: creative microscoping
MSC: 11A07
MSC: 11B65
MSC: 33D15
idZBL: Zbl 07442481
idMR: MR4339118
DOI: 10.21136/CMJ.2021.0317-20
.
Date available: 2021-11-08T16:04:43Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149245
.
Reference: [1] Gasper, G., Rahman, M.: Basic Hypergeometric Series.Encyclopedia of Mathematics and Its Applications 96. Cambridge University Press, Cambridge (2004). Zbl 1129.33005, MR 2128719, 10.1017/CBO9780511526251
Reference: [2] Guo, V. J. W., Schlosser, M. J.: Proof of a basic hypergeometric supercongruence modulo the fifth power of a cyclotomic polynomial.J. Difference Equ. Appl. 25 (2019), 921-929. Zbl 1426.33048, MR 3996958, 10.1080/10236198.2019.1622690
Reference: [3] Guo, V. J. W., Schlosser, M. J.: Some $q$-supercongruences from transformation formulas for basic hypergeometric series.Constr. Approx. 53 (2021), 155-200. Zbl 07326825, MR 4205256, 10.1007/s00365-020-09524-z
Reference: [4] Guo, V. J. W., Schlosser, M. J., Zudili, W.: New quadratic identities for basic hypergeometric series and q-congruences. Preprint. Available at \let \relax \brokenlink{http://math.ecnu.edu.cn/ jwguo/{maths/quad.pdf}}..
Reference: [5] Guo, V. J. W., Zudilin, W.: A $q$-microscope for supercongruences.Adv. Math. 346 (2019), 329-358. Zbl 07035902, MR 3910798, 10.1016/j.aim.2019.02.008
Reference: [6] Guo, V. J. W., Zudilin, W.: On a $q$-deformation of modular forms.J. Math. Anal. Appl. 475 (2019), 1636-1646. Zbl 1445.11014, MR 3944391, 10.1016/j.jmaa.2019.03.035
Reference: [7] Guo, V. J. W., Zudilin, W.: A common $q$-analogue of two supercongruences.Result. Math. 75 (2020), Article ID 46, 11 pages. Zbl 1439.33007, MR 4075300, 10.1007/s00025-020-1168-7
Reference: [8] Guo, V. J. W., Zudilin, W.: Dwork-type supercongruences through a creative $q$-microscope.J. Comb. Theory, Ser. A 178 (2021), Article ID 105362, 37 pages. Zbl 07304668, MR 4183862, 10.1016/j.jcta.2020.105362
Reference: [9] Li, L., Wang, S.-D.: Proof of a $q$-supercongruence conjectured by Guo and Schlosser.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114 (2020), Article ID 190, 7 pages. Zbl 07258316, MR 4138479, 10.1007/s13398-020-00923-2
Reference: [10] Liu, J-C.: On Van Hamme's (A.2) and (H.2) supercongruences.J. Math. Anal. Appl. 471 (2019), 613-622. Zbl 1423.11015, MR 3906342, 10.1016/j.jmaa.2018.10.095
Reference: [11] Liu, J.-C., Petrov, F.: Congruences on sums of $q$-binomial coefficients.Adv. Appl. Math. 116 (2020), Article ID 102003, 11 pages. Zbl 07175431, MR 4056114, 10.1016/j.aam.2020.102003
Reference: [12] Long, L., Ramakrishna, R.: Some supercongruences occurring in truncated hypergeometric series.Adv. Math. 290 (2016), 773-808. Zbl 1336.33018, MR 3451938, 10.1016/j.aim.2015.11.043
Reference: [13] Mao, G.-S., Pan, H.: On the divisibility of some truncated hypergeometric series.Acta Arith. 195 (2020), 199-206. Zbl 07221836, MR 4109895, 10.4064/aa190511-2-1
Reference: [14] Ni, H.-X., Pan, H.: On a conjectured $q$-congruence of Guo and Zeng.Int. J. Number Theory 14 (2018), 1699-1707. Zbl 1428.11041, MR 3827955, 10.1142/S1793042118501038
Reference: [15] Sun, Z.-W.: On sums of Apéry polynomials and related congruences.J. Number Theory 132 (2012), 2673-2690. Zbl 1275.11038, MR 2954998, 10.1016/j.jnt.2012.05.014
Reference: [16] Swisher, H.: On the supercongruence conjectures of Van Hamme.Res. Math. Sci. 2 (2015), Article ID 18, 21 pages. Zbl 1337.33005, MR 3411813, 10.1186/s40687-015-0037-6
Reference: [17] Tauraso, R.: $q$-analogs of some congruences involving Catalan numbers.Adv. Appl. Math. 48 (2012), 603-614. Zbl 1270.11016, MR 2920834, 10.1016/j.aam.2011.12.002
Reference: [18] Hamme, L. Van: Some conjectures concerning partial sums of generalized hypergeometric series.$p$-Adic Functional Analysis Lecture Notes in Pure and Applied Mathematics 192. Marcel Dekker, New York (1997), 223-236. Zbl 0895.11051, MR 1459212
Reference: [19] Wang, X., Yue, M.: A $q$-analogue of the (A.2) supercongruence of Van Hamme for any prime $p\equiv 3\pmod{4}$.Int. J. Number Theory 16 (2020), 1325-1335. Zbl 07219273, MR 4120479, 10.1142/S1793042120500694
Reference: [20] Wang, X., Yue, M.: Some $q$-supercongruences from Watson's $_8\phi_7$ transformation formula.Result. Math. 75 (2020), Article ID 71, 15 pages. Zbl 1437.33015, MR 4091607, 10.1007/s00025-020-01195-3
Reference: [21] Zudilin, W.: Congruences for $q$-binomial coefficients.Ann. Comb. 23 (2019), 1123-1135. Zbl 1431.11032, MR 4039579, 10.1007/s00026-019-00461-8
.

Files

Files Size Format View
CzechMathJ_71-2021-4_18.pdf 218.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo