Title:
|
Derived dimension via $\tau $-tilting theory (English) |
Author:
|
Zhang, Yingying |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
4 |
Year:
|
2021 |
Pages:
|
1167-1172 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Comparing the bounded derived categories of an algebra and of the endomorphism algebra of a given support $\tau $-tilting module, we find a relation between the derived dimensions of an algebra and of the endomorphism algebra of a given $\tau $-tilting module. (English) |
Keyword:
|
support $\tau $-tilting module |
Keyword:
|
endomorphism algebra |
Keyword:
|
derived dimension |
MSC:
|
16E10 |
MSC:
|
16G10 |
idZBL:
|
Zbl 07442482 |
idMR:
|
MR4339119 |
DOI:
|
10.21136/CMJ.2021.0321-20 |
. |
Date available:
|
2021-11-08T16:05:15Z |
Last updated:
|
2024-01-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149246 |
. |
Reference:
|
[1] Adachi, T., Iyama, O., Reiten, I.: $\tau$-tilting theory.Compos. Math. 150 (2014), 415-452. Zbl 1330.16004, MR 3187626, 10.1112/S0010437X13007422 |
Reference:
|
[2] Hügel, L. Angeleri, Marks, F., Vitória, J.: Silting modules.Int. Math. Res. Not. 2016 (2016), 1251-1284. Zbl 1367.16005, MR 3493448, 10.1093/imrn/rnv191 |
Reference:
|
[3] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1: Techniques of Representation Theory.London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). Zbl 1092.16001, MR 2197389, 10.1017/CBO9780511614309 |
Reference:
|
[4] Bekkert, V., Merklen, H. A.: Indecomposables in derived categories of gentle algebras.Algebr. Represent. Theory 6 (2003), 285-302. Zbl 1032.16011, MR 2000963, 10.1023/a:1025142023594 |
Reference:
|
[5] Burban, I., Drozd, Y.: On the derived categories of gentle and skew-gentle algebra: Homological algebra and matrix problems.Available at https://arxiv.org/abs/1706.08358 (2017), 57 pages. |
Reference:
|
[6] Chen, X.-W., Ye, Y., Zhang, P.: Algebras of derived dimension zero.Commun. Algebra 36 (2008), 1-10. Zbl 1135.16012, MR 2378361, 10.1080/00927870701649184 |
Reference:
|
[7] Han, Y.: Derived dimensions of representation-finite algebras.Available at https://arxiv.org/abs/0909.0330 (2009), 4 pages. |
Reference:
|
[8] Happel, D.: On the derived category of a finite-dimensional algebra.Comment. Math. Helv. 62 (1987), 339-389. Zbl 0626.16008, MR 0910167, 10.1007/BF02564452 |
Reference:
|
[9] Oppermann, S.: Lower bounds for Auslander's representation dimension.Duke Math. J. 148 (2009), 211-249. Zbl 1173.16007, MR 2524495, 10.1215/00127094-2009-025 |
Reference:
|
[10] Rouquier, R.: Representation dimension of exterior algebras.Invent. Math. 165 (2006), 357-367. Zbl 1101.18006, MR 2231960, 10.1007/s00222-006-0499-7 |
Reference:
|
[11] Rouquier, R.: Dimensions of triangulated categories.J. $K$-Theory 1 (2008), 193-256. Zbl 1165.18008, MR 2434186, 10.1017/is007011012jkt010 |
Reference:
|
[12] Suarez, P.: On the global dimension of the endomorphism algebra of a $\tau$-tilting module.J. Pure Appl. Algebra 225 (2021), 106740. MR 4232685, 10.1016/j.jpaa.2021.106740 |
Reference:
|
[13] Treffinger, H.: $\tau$-tilting theory and $\tau$-slices.J. Algebra 481 (2017), 362-392. Zbl 1411.16012, MR 3639480, 10.1016/j.jalgebra.2017.03.004 |
Reference:
|
[14] Zheng, J., Huang, Z.: An upper bound for the dimension of bounded derived categories.J. Algebra 556 (2020), 1211-1228. Zbl 1440.18025, MR 4090423, 10.1016/j.jalgebra.2020.04.012 |
. |