Previous |  Up |  Next

Article

Title: Schatten class generalized Toeplitz operators on the Bergman space (English)
Author: Xu, Chunxu
Author: Yu, Tao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 4
Year: 2021
Pages: 1173-1188
Summary lang: English
.
Category: math
.
Summary: Let $\mu $ be a finite positive measure on the unit disk and let $j\geq 1$ be an integer. D. Suárez (2015) gave some conditions for a generalized Toeplitz operator $T_{\mu }^{(j)}$ to be bounded or compact. We first give a necessary and sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class for $1\leq p<\infty $ on the Bergman space $A^{2}$, and then give a sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class $(0<p<1)$ on $A^{2}$. We also discuss the generalized Toeplitz operators with general bounded symbols. If $\varphi \in L^{\infty }(D, {\rm d}A)$ and $1<p<\infty $, we define the generalized Toeplitz operator $T_{\varphi }^{(j)}$ on the Bergman space $A^p$ and characterize the compactness of the finite sum of operators of the form $T_{\varphi _1}^{(j)}\cdots T_{\varphi _n}^{(j)}$. (English)
Keyword: generalized Toeplitz operator
Keyword: Schatten class
Keyword: compactness
Keyword: Bergman space
Keyword: Berezin transform
MSC: 47B10
MSC: 47B35
idZBL: Zbl 07442483
idMR: MR4339120
DOI: 10.21136/CMJ.2021.0336-20
.
Date available: 2021-11-08T16:05:43Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149247
.
Reference: [1] Arazy, J., Fisher, S. D., Peetre, J.: Hankel operators on weighted Bergman spaces.Am. J. Math. 110 (1988), 989-1053. Zbl 0669.47017, MR 0970119, 10.2307/2374685
Reference: [2] Engliš, M.: Toeplitz operators and group representations.J. Fourier Anal. Appl. 13 (2007), 243-265. Zbl 1128.47029, MR 2334609, 10.1007/s00041-006-6009-x
Reference: [3] Luecking, D. H.: Trace ideal criteria for Toeplitz operators.J. Funct. Anal. 73 (1987), 345-368. Zbl 0618.47018, MR 0899655, 10.1016/0022-1236(87)90072-3
Reference: [4] Miao, J., Zheng, D.: Compact operators on Bergman spaces.Integral Equations Oper. Theory 48 (2004), 61-79. Zbl 1060.47036, MR 2029944, 10.1007/s00020-002-1176-x
Reference: [5] Roman, S.: The formula of Faa di Bruno.Am. Math. Mon. 87 (1980), 805-809. Zbl 0513.05009, MR 0602839, 10.2307/2320788
Reference: [6] Simon, B.: Trace Ideals and Their Applications.London Mathematical Society Lecture Note Series 35. Cambridge University Press, Cambridge (1979). Zbl 0423.47001, MR 0541149, 10.1090/surv/120
Reference: [7] Suárez, D.: Approximation and symbolic calculus for Toeplitz algebras on the Bergman space.Rev. Mat. Iberoam. 20 (2004), 563-610. Zbl 1057.32005, MR 2073132, 10.4171/RMI/401
Reference: [8] Suárez, D.: A generalization of Toeplitz operators on the Bergman space.J. Oper. Theory 73 (2015), 315-332. Zbl 1399.32010, MR 3346124, 10.7900/jot.2013nov28.2023
Reference: [9] Zhu, K.: Positive Toeplitz operators on the weighted Bergman spaces of bounded symmetric domains.J. Oper. Theory 20 (1988), 329-357. Zbl 0676.47016, MR 1004127
Reference: [10] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball.Graduate Texts in Mathematics 226. Springer, New York (2005). Zbl 1067.32005, MR 2115155, 10.1007/0-387-27539-8
Reference: [11] Zhu, K.: Operator Theory in Function Spaces.Mathematical Surveys and Monographs 138. American Mathematical Society, Providence (2007). Zbl 1123.47001, MR 2311536, 10.1090/surv/138
Reference: [12] Zhu, K.: Schatten class Toeplitz operators on weighted Bergman spaces of the unit ball.New York J. Math. 13 (2007), 299-316. Zbl 1127.47029, MR 2357717
.

Files

Files Size Format View
CzechMathJ_71-2021-4_20.pdf 268.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo