Previous |  Up |  Next

Article

Title: Remarks on Ramanujan's inequality concerning the prime counting function (English)
Author: Hassani, Mehdi
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 3
Year: 2021
Pages: 473-482
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate Ramanujan's inequality concerning the prime counting function, asserting that $\pi (x)^2<\frac {\mathrm{e} \,x}{\log x}\,\pi \left (\frac {x}{\mathrm{e} }\right )$ for $x$ sufficiently large. First, we study its sharpness by giving full asymptotic expansions of its left and right hand sides expressions. Then, we discuss the structure of Ramanujan's inequality, by replacing the factor $\frac {x}{\log x}$ on its right hand side by the factor $\frac {x}{\log x-h}$ for a given $h$, and by replacing the numerical factor $\mathrm{e} $ by a given positive $\alpha $. Finally, we introduce and study inequalities analogous to Ramanujan's inequality. (English)
Keyword: Prime numbers
Keyword: Ramanujan's inequality
Keyword: Riemann hypothesis
MSC: 11A41
idZBL: Zbl 07484381
idMR: MR4355420
.
Date available: 2022-01-10T10:09:08Z
Last updated: 2022-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/149330
.
Reference: [1] Axler, C.: Estimates for $\pi (x)$ for large values of $x$ and Ramanujan's prime counting inequality.Integers, 18, Paper No. A61, 2018, MR 3819880
Reference: [2] Berndt, B.C.: Ramanujan's Notebooks. Part IV.1994, Springer-Verlag, New York,
Reference: [3] Dudek, A.W., Platt, D.J.: On solving a curious inequality of Ramanujan.Exp. Math., 24, 3, 2015, 289-294, MR 3359216, 10.1080/10586458.2014.990118
Reference: [4] Dusart, P.: Estimates of the $k$th prime under the Riemann hypothesis.Ramanujan J., 47, 1, 2018, 141-154, MR 3857939, 10.1007/s11139-017-9984-4
Reference: [5] Hardy, G.H.: Ramanujan. Twelve lectures on subjects suggested by his life and work.1940, Cambridge University Press, Cambridge, England; Macmillan Company, New York,
Reference: [6] Hassani, M.: Generalizations of an inequality of Ramanujan concerning prime counting function.Appl. Math. E-Notes, 13, 2013, 148-154, MR 3141823
Reference: [7] Hassani, M.: On an inequality of Ramanujan concerning the prime counting function.Ramanujan J., 28, 3, 2012, 435-442, MR 2950516, 10.1007/s11139-011-9362-6
Reference: [8] Mossinghoff, M.J., Trudgian, T.S.: Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function.J. Number Theory, 157, 2015, 329-349, MR 3373245, 10.1016/j.jnt.2015.05.010
Reference: [9] Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, Ch.W.: NIST Handbook of Mathematical Functions.2010, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, MR 2723248
Reference: [10] Platt, D., Trudgian, T.: The error term in the prime number theorem.arXiv:, 1809.03134, 2018, Preprint.. MR 3448979
Reference: [11] Ramanujan, S.: Notebooks. Vols. 1, 2.1957, Tata Institute of Fundamental Research, Bombay,
Reference: [12] Trudgian, T.: Updating the error term in the prime number theorem.Ramanujan J., 39, 2, 2016, 225-234, MR 3448979, 10.1007/s11139-014-9656-6
.

Files

Files Size Format View
ActaOstrav_29-2021-3_11.pdf 370.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo