Previous |  Up |  Next

Article

Title: BIE model of periodic diffraction problems in optics (English)
Author: Krček, Jiří
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 1
Year: 2022
Pages: 81-92
Summary lang: English
.
Category: math
.
Summary: Optical diffraction on a periodical interface belongs to relatively lowly exploited applications of the boundary integral equations method. This contribution presents a less frequent approach to the diffraction problem based on vector tangential fields of electromagnetic intensities. The problem is formulated as the system of boundary integral equations for tangential fields, for which existence and uniqueness of weak solution is proved. The properties of introduced boundary operators with singular kernel are discussed with regard to performed numerical implementation. Presented theoretical model is of advantage when the electromagnetic field near the material interface is studied, that is illustrated by several application outputs. (English)
Keyword: optical diffraction
Keyword: tangential fields
Keyword: boundary elements method
MSC: 45P05
MSC: 78A45
idZBL: Zbl 07478518
idMR: MR4392406
DOI: 10.21136/AM.2021.0098-20
.
Date available: 2022-02-08T10:49:33Z
Last updated: 2024-03-04
Stable URL: http://hdl.handle.net/10338.dmlcz/149360
.
Reference: [1] Bao, G., Cowsar, L., (eds.), W. Masters: Mathematicall Modelling in Optical Science.Frontiers in Applied Mathematics 22. SIAM, Philadelphia (2001). Zbl 0964.00050, MR 1831328, 10.1137/1.9780898717594
Reference: [2] Bonnet, M., Guiggiani, M.: Tangential derivative of singular boundary integrals with respect to the position of collocation points.Int. J. Numer. Methods Eng. 41 (1998), 1255-1275. Zbl 0922.73073, MR 1611317, 10.1002/(SICI)1097-0207(19980415)41:7<1255::AID-NME333>3.0.CO;2-N
Reference: [3] Buffa, A., Costabel, M., Schwab, C.: Boundary element methods for Maxwell's equations on non-smooth domains.Numer. Math. 92 (2002), 679-710. Zbl 1019.65094, MR 1935806, 10.1007/s002110100372
Reference: [4] Buffa, A., Costabel, M., Sheen, D.: On traces for $H({\bf curl},\Omega)$ in Lipschitz domains.J. Math. Anal. Appl. 276 (2002), 845-867. Zbl 1106.35304, MR 1944792, 10.1016/S0022-247X(02)00455-9
Reference: [5] Chandler-Wilde, S. N., Peplow, A. T.: A boundary integral equation formulation for the Helmholtz equation in a locally perturbed half-plane.ZAMM, Z. Angew. Math. Mech. 85 (2005), 79-88. Zbl 1141.35359, MR 2119257, 10.1002/zamm.200410157
Reference: [6] Chen, X., Friedmann, A.: Maxwell's equations in a periodic structure.Trans. Am. Math. Soc. 323 (1991), 465-507. Zbl 0727.35131, MR 1010883, 10.1090/S0002-9947-1991-1010883-1
Reference: [7] Chiu, N., Nien, S., Tu, C., Lee, J., Lin, C.: Advanced metal nanostructure design for surface plasmon photonic bandgap biosensor device.Annual International Conference of the IEEE Engineering in Medicine and Biology IEEE, New York (2006), 6521-6524. 10.1109/IEMBS.2006.260869
Reference: [8] Flory, F., Escoubas, L., Berginc, G.: Optical properties of nanostructured materials: A review.J. Nanophotonics 5 (2011), Article ID 052502, 21 pages. 10.1117/1.3609266
Reference: [9] Kleemann, B. H., Mitreiter, A., Wyrowski, F.: Integral equation method with parametrization of grating profile theory and experiments.J. Modern Optics 43 (1996), 1323-1349. 10.1080/095003496155210
Reference: [10] Krček, J., Vlček, J., Žídek, A.: Tangential fields in optical diffraction problems.Programs and Algorithms of Numerical Mathematics 16 Academy of Sciences of the Czech Republic, Prague (2013), 124-129. Zbl 1340.78010, MR 3203810
Reference: [11] Li, L.: Use of Fourier series in the analysis of discontinuous periodic structures.J. Optical Soc. Am., Ser. A 13 (1996), 1870-1876. 10.1364/JOSAA.13.001870
Reference: [12] Linton, C. M.: The Green's function for the two-dimensional Helmholtz equation in periodic domains.J. Eng. Math. 33 (1998), 377-402. Zbl 0922.76274, MR 1638860, 10.1023/A:1004377501747
Reference: [13] Nevière, M., Popov, E.: Light Propagation in Periodic Media: Differential Theory and Design.Marcel Dekker, New York (2002). 10.1201/9781482275919
Reference: [14] Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements.Springer, New York (2008). Zbl 1153.65302, MR 2361676, 10.1007/978-0-387-68805-3
Reference: [15] Taflove, A., Hagness, S., Piket-May, M.: Computational electrodynamics: The finitedifference time-domain method.The Electrical Engineering Handbook Academic Press, Amsterdam (2000), 629-670. MR 1768189, 10.1016/B978-012170960-0/50046-3
Reference: [16] Žídek, A., Vlček, J., Krček, J.: Solution of diffraction problems by boundary integral equations.Proceedings of APLIMAT 2012 Slovak University of Technology, Bratislava (2012), 221-229.
.

Files

Files Size Format View
AplMat_67-2022-1_5.pdf 617.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo