Previous |  Up |  Next

Article

Title: Continuous dependence on parameters and boundedness of solutions to a hysteresis system (English)
Author: Kamachkin, Alexander M.
Author: Potapov, Dmitriy K.
Author: Yevstafyeva, Victoria V.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 1
Year: 2022
Pages: 65-80
Summary lang: English
.
Category: math
.
Summary: We analyze an ordinary differential system with a hysteresis-relay nonlinearity in two cases when the system is autonomous or nonautonomous. Sufficient conditions for both the continuous dependence on the system parameters and the boundedness of the solutions to the system are obtained. We give a supporting example for the autonomous system. (English)
Keyword: ODE system
Keyword: hysteresis relay
Keyword: external disturbance
Keyword: bounded solution
Keyword: periodic solution
MSC: 34C11
MSC: 34C25
MSC: 34C55
MSC: 93C15
MSC: 93C73
idZBL: Zbl 07478517
idMR: MR4392405
DOI: 10.21136/AM.2021.0085-20
.
Date available: 2022-02-08T10:48:50Z
Last updated: 2024-03-04
Stable URL: http://hdl.handle.net/10338.dmlcz/149359
.
Reference: [1] Andronov, A. A., Vitt, A. A., Khaikin, S. E.: Theory of Oscillators.International Series of Monographs in Physics 4. Pergamon Press, Oxford (1966). Zbl 0188.56304, MR 0198734, 10.1016/C2013-0-06631-5
Reference: [2] Arnold, M., Begun, N., Gurevich, P., Kwame, E., Lamba, H., Rachinskii, D.: Dynamics of discrete time systems with a hysteresis stop operator.SIAM J. Appl. Dyn. Syst. 16 (2017), 91-119. Zbl 1361.37076, MR 3592068, 10.1137/16M1073522
Reference: [3] ström, K. J. Å: Oscillations in systems with relay feedback.Adaptive Control, Filtering, and Signal Processing The IMA Volumes in Mathematics and Its Applications 74. Springer, New York (1995), 1-25. Zbl 0829.93032, MR 1351012, 10.1007/978-1-4419-8568-2_1
Reference: [4] Balanov, Z., Kravetc, P., Krawcewicz, W., Rachinskii, D.: Equivariant degree method for analysis of Hopf bifurcation of relative periodic solutions: Case study of a ring of oscillators.J. Differ. Equations 265 (2018), 4530-4574. Zbl 1397.34121, MR 3843308, 10.1016/j.jde.2018.06.014
Reference: [5] Bertotti, G., (eds.), I. D. Mayergoyz: The Science of Hysteresis. Vol. I. Mathematical Modeling and Applications.Elsevier/Academic Press, Amsterdam (2006). Zbl 1117.34045, MR 2307929, 10.1016/B978-012480874-4/50000-2
Reference: [6] Botkin, N. D., Brokate, M., Behi-Gornostaeva, E. G. El: One-phase flow in porous media with hysteresis.Phys. B 486 (2016), 183-186. MR 3797613, 10.1016/j.physb.2015.08.039
Reference: [7] Brokate, M., Krejčí, P.: Weak differentiability of scalar hysteresis operators.Discrete Contin. Dyn. Syst. 35 (2015), 2405-2421. Zbl 1338.47118, MR 3299005, 10.3934/dcds.2015.35.2405
Reference: [8] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions.Applied Mathematical Sciences 121. Springer, New York (1996). Zbl 0951.74002, MR 1411908, 10.1007/978-1-4612-4048-8
Reference: [9] Burns, R. S.: Advanced Control Engineering.Butterworth-Heinemann, Oxford (2001). 10.1016/B978-0-7506-5100-4.X5000-1
Reference: [10] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Lasiecka, I., Webler, C. M.: Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density.Adv. Nonlinear Anal. 6 (2017), 121-145. Zbl 1373.35045, MR 3641629, 10.1515/anona-2016-0027
Reference: [11] Fang, L., Wang, J., Zhang, Q.: Identification of extended Hammerstein systems with hysteresis-type input nonlinearities described by Preisach model.Nonlinear Dyn. 79 (2015), 1257-1273. Zbl 1345.93046, MR 3302768, 10.1007/s11071-014-1740-3
Reference: [12] Fonda, A., Garrione, M., Gidoni, P.: Periodic perturbations of Hamiltonian systems.Adv. Nonlinear Anal. 5 (2016), 367-382. Zbl 1353.37124, MR 3567850, 10.1515/anona-2015-0122
Reference: [13] Johansson, K. H., Rantzer, A., Åström, K. J.: Fast switches in relay feedback systems.Automatica 35 (1999), 539-552. Zbl 0934.93033, 10.1016/S0005-1098(98)00160-5
Reference: [14] Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V.: Existence of periodic solutions to automatic control system with relay nonlinearity and sinusoidal external influence.Int. J. Robust Nonlinear Control 27 (2017), 204-211. Zbl 1353.93055, MR 3594931, 10.1002/rnc.3567
Reference: [15] Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V.: Existence of subharmonic solutions to a hysteresis system with sinusoidal external influence.Electron. J. Differ. Equ. 2017 (2017), Article ID 140, 10 pages. Zbl 1370.34066, MR 3665602
Reference: [16] Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V.: On uniqueness and properties of periodic solution of second-order nonautonomous system with discontinuous nonlinearity.J. Dyn. Control Syst. 23 (2017), 825-837. Zbl 1381.34083, MR 3688896, 10.1007/s10883-017-9368-5
Reference: [17] Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V.: Existence of periodic modes in automatic control system with a three-position relay.Int. J. Control 93 (2020), 763-770. Zbl 1435.34048, MR 4077763, 10.1080/00207179.2018.1562221
Reference: [18] Krasnosel'skii, M. A., Pokrovskii, A. V.: Systems with Hysteresis.Springer, Berlin (1989). Zbl 0665.47038, MR 0987431, 10.1007/978-3-642-61302-9
Reference: [19] Leonov, G. A., Shumafov, M. M., Teshev, V. A., Aleksandrov, K. D.: Differential equations with hysteresis operators. Existence of solutions, stability, and oscillations.Differ. Equ. 53 (2017), 1764-1816. Zbl 1394.34004, MR 3804280, 10.1134/S0012266117130055
Reference: [20] Macki, J. W., Nistri, P., Zecca, P.: Mathematical models for hysteresis.SIAM Rev. 35 (1993), 94-123. Zbl 0771.34018, MR 1207799, 10.1137/1035005
Reference: [21] Mayergoyz, I. D.: Mathematical Models of Hysteresis and Their Applications.Elsevier, Amsterdam (2003). MR 1083150, 10.1016/B978-0-12-480873-7.X5000-2
Reference: [22] McCarthy, S., Rachinskii, D.: Dynamics of systems with Preisach memory near equilibria.Math. Bohem. 139 (2014), 39-73. Zbl 1340.34163, MR 3231429, 10.21136/MB.2014.143636
Reference: [23] Paraskevopoulos, P. N.: Modern Control Engineering.Control Engineering (Boca Raton) 10. Marcel Dekker, New York (2001). Zbl 0986.93001, 10.1201/9781315214573
Reference: [24] Pimenov, A., Rachinskii, D.: Homoclinic orbits in a two-patch predator-prey model with Preisach hysteresis operator.Math. Bohem. 139 (2014), 285-298. Zbl 1349.47141, MR 3238840, 10.21136/MB.2014.143855
Reference: [25] Pokrovskii, A. V.: Existence and computation of stable modes in relay systems.Autom. Remote Control 47 (1986), 451-458 translation from Avtom. Telemekh. 1986 1986 16-23. Zbl 0604.93050, MR 0848397
Reference: [26] Potapov, D. K., Yevstafyeva, V. V.: Lavrent'ev problem for separated flows with an external perturbation.Electron. J. Differ. Equ. 2013 (2013), Article ID 255, 6 pages. Zbl 1290.35134, MR 3138830
Reference: [27] Rachinskii, D.: Realization of arbitrary hysteresis by a low-dimensional gradient flow.Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 227-243. Zbl 1330.34074, MR 3426841, 10.3934/dcdsb.2016.21.227
Reference: [28] Solovyov, A. M., Semenov, M. E., Meleshenko, P. A., Reshetova, O. O., Popov, M. A., Kabulova, E. G.: Hysteretic nonlinearity and unbounded solutions in oscillating systems.Procedia Engineering 201 (2017), 578-583. 10.1016/j.proeng.2017.09.634
Reference: [29] Tsypkin, Y. Z.: Relay Control Systems.Cambridge University Press, Cambridge (1984). Zbl 0571.93001, MR 0789077
Reference: [30] Varigonda, S., Georgiou, T. T.: Dynamics of relay relaxation oscillators.IEEE Trans. Autom. Control 46 (2001), 65-77. Zbl 1004.34034, MR 1809466, 10.1109/9.898696
Reference: [31] Visintin, A.: Differential Models of Hysteresis.Applied Mathematical Sciences 111. Springer, Berlin (1994). Zbl 0820.35004, MR 1329094, 10.1007/978-3-662-11557-2
Reference: [32] Visintin, A.: Ten issues about hysteresis.Acta Appl. Math. 132 (2014), 635-647. Zbl 1305.74072, MR 3255072, 10.1007/s10440-014-9936-6
Reference: [33] Visintin, A.: P.D.E.s with hysteresis 30 years later.Discrete Contin. Dyn. Syst., Ser. S 8 (2015), 793-816. Zbl 1304.35357, MR 3356462, 10.3934/dcdss.2015.8.793
Reference: [34] Yevstafyeva, V. V.: On existence conditions for a two-point oscillating periodic solution in an non-autonomous relay system with a Hurwitz matrix.Autom. Remote Control 76 (2015), 977-988 translation from Avtom. Telemekh. 2015 2015 42-56. Zbl 1327.93225, MR 3374789, 10.1134/S000511791506003X
Reference: [35] Yevstafyeva, V. V.: Periodic solutions of a system of differential equations with hysteresis nonlinearity in the presence of eigenvalue zero.Ukr. Math. J. 70 (2019), 1252-1263 translation from Ukr. Mat. Zh. 70 2018 1085-1096. Zbl 1417.34098, MR 3863943, 10.1007/s11253-018-1566-0
Reference: [36] Yu, C.-C.: Autotuning of PID Controllers: Relay Feedback Approach.Advances in Industrial Control. Springer, Berlin (1999). Zbl 0962.93004, 10.1007/b137042
.

Files

Files Size Format View
AplMat_67-2022-1_4.pdf 266.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo