Previous |  Up |  Next

Article

Title: Rings whose nonsingular right modules are $R$-projective (English)
Author: Alagöz, Yusuf
Author: Benli, Sinem
Author: Büyükaşık, Engin
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 4
Year: 2021
Pages: 393-407
Summary lang: English
.
Category: math
.
Summary: A right $R$-module $M$ is called $R$-projective provided that it is projective relative to the right $R$-module $R_{R}$. This paper deals with the rings whose all nonsingular right modules are $R$-projective. For a right nonsingular ring $R$, we prove that $R_{R}$ is of finite Goldie rank and all nonsingular right $R$-modules are $R$-projective if and only if $R$ is right finitely $\Sigma$-$CS$ and flat right $R$-modules are $R$-projective. Then, $R$-projectivity of the class of nonsingular injective right modules is also considered. Over right nonsingular rings of finite right Goldie rank, it is shown that $R$-projectivity of nonsingular injective right modules is equivalent to $R$-projectivity of the injective hull $E(R_{R})$. In this case, the injective hull $E(R_{R})$ has the decomposition $E(R_{R})=U_{R} \oplus V_{R}$, where $U$ is projective and $\operatorname{Hom}(V,R/I)=0$ for each right ideal $I$ of $R$. Finally, we focus on the right orthogonal class $\mathcal{N}^{\perp}$ of the class $\mathcal{N}$ of nonsingular right modules. (English)
Keyword: nonsingular module
Keyword: $R$-projective module
Keyword: flat module
Keyword: perfect ring
MSC: 16D10
MSC: 16D40
MSC: 16D80
MSC: 16E30
idZBL: Zbl 07511568
idMR: MR4405811
DOI: 10.14712/1213-7243.2021.036
.
Date available: 2022-02-21T13:19:40Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149363
.
Reference: [1] Alagöz Y., Büyükaşik E.: Max-projective modules.J. Algebra Appl. 20 (2021), no. 6, Paper No. 2150095, 25 pages. MR 4256344, 10.1142/S021949882150095X
Reference: [2] Alhilali H., Ibrahim Y., Puninski G., Yousif M.: When $R$ is a testing module for projectivity?.J. Algebra 484 (2017), 198–206. MR 3656718, 10.1016/j.jalgebra.2017.04.010
Reference: [3] Amini B., Amini A., Ershad M.: Almost-perfect rings and modules.Comm. Algebra 37 (2009), no. 12, 4227–4240. MR 2588845, 10.1080/00927870902828918
Reference: [4] Amini A., Ershad M., Sharif H.: Rings over which flat covers of finitely generated modules are projective.Comm. Algebra 36 (2008), no. 8, 2862–2871. MR 2440285
Reference: [5] Anderson F. W., Fuller K. R.: Rings and Categories of Modules.Graduate Texts in Mathematics, 13, Springer, New York, 1992. Zbl 0765.16001, MR 1245487, 10.1007/978-1-4612-4418-9_2
Reference: [6] Bican L.: Precovers and Goldie's torsion theory.Math. Bohem. 128 (2003), no. 4, 395–400. MR 2032476, 10.21136/MB.2003.134006
Reference: [7] Cheatham T. J.: Finite dimensional torsion-free rings.Pacific J. Math. 39 (1971), 113–118. MR 0304430, 10.2140/pjm.1971.39.113
Reference: [8] Dinh H. Q., Holston C. J., Huynh D. V.: Quasi-projective modules over prime hereditary Noetherian V-rings are projective or injective.J. Algebra 360 (2012), 87–91. MR 2914635, 10.1016/j.jalgebra.2012.04.002
Reference: [9] Dung N. V.: A note on hereditary rings or non-singular rings with chain condition.Math. Scand. 66 (1990), no. 2, 301–306. MR 1075146, 10.7146/math.scand.a-12313
Reference: [10] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R.: Extending Modules.Pitman Research Notes in Mathematics Series, 313, Longman Scientific & Technical, Harlow, John Wiley & Sons, New York, 1994. Zbl 0841.16001, MR 1312366
Reference: [11] Durğun Y.: A generalization of $C$-rings.Ege Uni. J. of Faculty of Sci. 37 (2013), no. 2, 6–15.
Reference: [12] Enochs E. E., Jenda O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics, 30, Walter de Gruyter & Co., Berlin, 2000. Zbl 0952.13001, MR 1753146
Reference: [13] Faith C.: When are proper cyclics injective?.Pacific J. Math. 45 (1973), 97–112. MR 0320069, 10.2140/pjm.1973.45.97
Reference: [14] Faith C.: Algebra. II. Ring Theory.Grundlehren der Mathematischen Wissenschaften, 191, Springer, Berlin, 1976. MR 0427349
Reference: [15] Göbel R., Trlifaj J.: Approximations and endomorphism algebras of modules.De Gruyter Expositions in Mathematics, 41, Walter de Gruyter GmbH & Co., Berlin, 2006. MR 2251271
Reference: [16] Golan J. S., Teply M. L.: Torsion-free covers.Israel J. Math. 15 (1973), 237–256. MR 0325687, 10.1007/BF02787570
Reference: [17] Goodearl K. R.: Ring Theory.Nonsingular Rings and Modules Pure and Applied Mathematics, 33, Marcel Dekker, New York, 1976. MR 0429962
Reference: [18] Hamsher R. M.: Commutative, noetherian rings over which every module has a maximal submodule.Proc. Amer. Math. Soc. 17 (1966), 1471–1472. MR 0200303
Reference: [19] Herbera D., Trlifaj J.: Almost free modules and Mittag–Leffler conditions.Adv. Math. 229 (2012), no. 6, 3436–3467. MR 2900444, 10.1016/j.aim.2012.02.013
Reference: [20] Holm H., Jørgensen P.: Covers, precovers, and purity.Illinois J. Math. 52 (2008), no. 2, 691–703. Zbl 1189.16007, MR 2524661
Reference: [21] Ketkar R. D., Vanaja N.: $R$-projective modules over a semiperfect ring.Canad. Math. Bull. 24 (1981), no. 3, 365–367. MR 0632748, 10.4153/CMB-1981-055-x
Reference: [22] Lam T. Y.: Lectures on Modules and Rings.Graduate Texts in Mathematics, 189, Springer, New York, 1999. Zbl 0911.16001, MR 1653294, 10.1007/978-1-4612-0525-8
Reference: [23] Lam T. Y.: A First Course in Noncommutative Rings.Graduate Texts in Mathematics, 131, Springer, New York, 2001. Zbl 0980.16001, MR 1838439, 10.1007/978-1-4419-8616-0
Reference: [24] Nicholson W. K.: Semiregular modules and rings.Canadian J. Math. 28 (1976), no. 5, 1105–1120. MR 0422343, 10.4153/CJM-1976-109-2
Reference: [25] Sandomierski F. L.: Relative Injectivity and Projectivity.Ph.D. Thesis, The Pennsylvania State University, ProQuest LLC, Ann Arbor, 1964. MR 2614575
Reference: [26] Sandomierski F. L.: Nonsingular rings.Proc. Amer. Math. Soc. 19 (1968), 225–230. MR 0219568, 10.1090/S0002-9939-1968-0219568-5
Reference: [27] Šaroch J.: Approximations and the Mittag-Leffler conditions the tools.Israel J. of Math. 226 (2018), no. 2, 737–756. MR 3819707, 10.1007/s11856-018-1710-4
Reference: [28] Stenström B.: Rings of Quotients, An introduction to Methods of Ring Theory.Die Grundlehren der mathematischen Wissenschaften, 217, Springer, New York, 1975. MR 0389953
Reference: [29] Teply M. L.: Torsionfree injective modules.Pacific J. Math. 28 (1969), no. 2, 441–453. MR 0242878, 10.2140/pjm.1969.28.441
Reference: [30] Teply M. L.: Torsion-free covers. II.Israel J. Math. 23 (1976), no. 2, 132–136. MR 0417245
Reference: [31] Trlifaj J.: Faith's problem on $R$-projectivity is undecidable.Proc. Amer. Math. Soc. 147 (2019), no. 2, 497–504. MR 3894889, 10.1090/proc/14209
Reference: [32] Trlifaj J.: The dual Baer criterion for non-perfect rings.Forum Math. 32 (2020), no. 3, 663–672. MR 4095500, 10.1515/forum-2019-0028
Reference: [33] Turnidge D. R.: Torsion theories and semihereditary rings.Proc. Amer. Math. Soc. 24 (1970), 137–143. MR 0255601, 10.1090/S0002-9939-1970-0255601-1
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-4_1.pdf 249.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo