Title:
|
Rings whose nonsingular right modules are $R$-projective (English) |
Author:
|
Alagöz, Yusuf |
Author:
|
Benli, Sinem |
Author:
|
Büyükaşık, Engin |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
62 |
Issue:
|
4 |
Year:
|
2021 |
Pages:
|
393-407 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A right $R$-module $M$ is called $R$-projective provided that it is projective relative to the right $R$-module $R_{R}$. This paper deals with the rings whose all nonsingular right modules are $R$-projective. For a right nonsingular ring $R$, we prove that $R_{R}$ is of finite Goldie rank and all nonsingular right $R$-modules are $R$-projective if and only if $R$ is right finitely $\Sigma$-$CS$ and flat right $R$-modules are $R$-projective. Then, $R$-projectivity of the class of nonsingular injective right modules is also considered. Over right nonsingular rings of finite right Goldie rank, it is shown that $R$-projectivity of nonsingular injective right modules is equivalent to $R$-projectivity of the injective hull $E(R_{R})$. In this case, the injective hull $E(R_{R})$ has the decomposition $E(R_{R})=U_{R} \oplus V_{R}$, where $U$ is projective and $\operatorname{Hom}(V,R/I)=0$ for each right ideal $I$ of $R$. Finally, we focus on the right orthogonal class $\mathcal{N}^{\perp}$ of the class $\mathcal{N}$ of nonsingular right modules. (English) |
Keyword:
|
nonsingular module |
Keyword:
|
$R$-projective module |
Keyword:
|
flat module |
Keyword:
|
perfect ring |
MSC:
|
16D10 |
MSC:
|
16D40 |
MSC:
|
16D80 |
MSC:
|
16E30 |
idZBL:
|
Zbl 07511568 |
idMR:
|
MR4405811 |
DOI:
|
10.14712/1213-7243.2021.036 |
. |
Date available:
|
2022-02-21T13:19:40Z |
Last updated:
|
2024-01-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149363 |
. |
Reference:
|
[1] Alagöz Y., Büyükaşik E.: Max-projective modules.J. Algebra Appl. 20 (2021), no. 6, Paper No. 2150095, 25 pages. MR 4256344, 10.1142/S021949882150095X |
Reference:
|
[2] Alhilali H., Ibrahim Y., Puninski G., Yousif M.: When $R$ is a testing module for projectivity?.J. Algebra 484 (2017), 198–206. MR 3656718, 10.1016/j.jalgebra.2017.04.010 |
Reference:
|
[3] Amini B., Amini A., Ershad M.: Almost-perfect rings and modules.Comm. Algebra 37 (2009), no. 12, 4227–4240. MR 2588845, 10.1080/00927870902828918 |
Reference:
|
[4] Amini A., Ershad M., Sharif H.: Rings over which flat covers of finitely generated modules are projective.Comm. Algebra 36 (2008), no. 8, 2862–2871. MR 2440285 |
Reference:
|
[5] Anderson F. W., Fuller K. R.: Rings and Categories of Modules.Graduate Texts in Mathematics, 13, Springer, New York, 1992. Zbl 0765.16001, MR 1245487, 10.1007/978-1-4612-4418-9_2 |
Reference:
|
[6] Bican L.: Precovers and Goldie's torsion theory.Math. Bohem. 128 (2003), no. 4, 395–400. MR 2032476, 10.21136/MB.2003.134006 |
Reference:
|
[7] Cheatham T. J.: Finite dimensional torsion-free rings.Pacific J. Math. 39 (1971), 113–118. MR 0304430, 10.2140/pjm.1971.39.113 |
Reference:
|
[8] Dinh H. Q., Holston C. J., Huynh D. V.: Quasi-projective modules over prime hereditary Noetherian V-rings are projective or injective.J. Algebra 360 (2012), 87–91. MR 2914635, 10.1016/j.jalgebra.2012.04.002 |
Reference:
|
[9] Dung N. V.: A note on hereditary rings or non-singular rings with chain condition.Math. Scand. 66 (1990), no. 2, 301–306. MR 1075146, 10.7146/math.scand.a-12313 |
Reference:
|
[10] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R.: Extending Modules.Pitman Research Notes in Mathematics Series, 313, Longman Scientific & Technical, Harlow, John Wiley & Sons, New York, 1994. Zbl 0841.16001, MR 1312366 |
Reference:
|
[11] Durğun Y.: A generalization of $C$-rings.Ege Uni. J. of Faculty of Sci. 37 (2013), no. 2, 6–15. |
Reference:
|
[12] Enochs E. E., Jenda O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics, 30, Walter de Gruyter & Co., Berlin, 2000. Zbl 0952.13001, MR 1753146 |
Reference:
|
[13] Faith C.: When are proper cyclics injective?.Pacific J. Math. 45 (1973), 97–112. MR 0320069, 10.2140/pjm.1973.45.97 |
Reference:
|
[14] Faith C.: Algebra. II. Ring Theory.Grundlehren der Mathematischen Wissenschaften, 191, Springer, Berlin, 1976. MR 0427349 |
Reference:
|
[15] Göbel R., Trlifaj J.: Approximations and endomorphism algebras of modules.De Gruyter Expositions in Mathematics, 41, Walter de Gruyter GmbH & Co., Berlin, 2006. MR 2251271 |
Reference:
|
[16] Golan J. S., Teply M. L.: Torsion-free covers.Israel J. Math. 15 (1973), 237–256. MR 0325687, 10.1007/BF02787570 |
Reference:
|
[17] Goodearl K. R.: Ring Theory.Nonsingular Rings and Modules Pure and Applied Mathematics, 33, Marcel Dekker, New York, 1976. MR 0429962 |
Reference:
|
[18] Hamsher R. M.: Commutative, noetherian rings over which every module has a maximal submodule.Proc. Amer. Math. Soc. 17 (1966), 1471–1472. MR 0200303 |
Reference:
|
[19] Herbera D., Trlifaj J.: Almost free modules and Mittag–Leffler conditions.Adv. Math. 229 (2012), no. 6, 3436–3467. MR 2900444, 10.1016/j.aim.2012.02.013 |
Reference:
|
[20] Holm H., Jørgensen P.: Covers, precovers, and purity.Illinois J. Math. 52 (2008), no. 2, 691–703. Zbl 1189.16007, MR 2524661 |
Reference:
|
[21] Ketkar R. D., Vanaja N.: $R$-projective modules over a semiperfect ring.Canad. Math. Bull. 24 (1981), no. 3, 365–367. MR 0632748, 10.4153/CMB-1981-055-x |
Reference:
|
[22] Lam T. Y.: Lectures on Modules and Rings.Graduate Texts in Mathematics, 189, Springer, New York, 1999. Zbl 0911.16001, MR 1653294, 10.1007/978-1-4612-0525-8 |
Reference:
|
[23] Lam T. Y.: A First Course in Noncommutative Rings.Graduate Texts in Mathematics, 131, Springer, New York, 2001. Zbl 0980.16001, MR 1838439, 10.1007/978-1-4419-8616-0 |
Reference:
|
[24] Nicholson W. K.: Semiregular modules and rings.Canadian J. Math. 28 (1976), no. 5, 1105–1120. MR 0422343, 10.4153/CJM-1976-109-2 |
Reference:
|
[25] Sandomierski F. L.: Relative Injectivity and Projectivity.Ph.D. Thesis, The Pennsylvania State University, ProQuest LLC, Ann Arbor, 1964. MR 2614575 |
Reference:
|
[26] Sandomierski F. L.: Nonsingular rings.Proc. Amer. Math. Soc. 19 (1968), 225–230. MR 0219568, 10.1090/S0002-9939-1968-0219568-5 |
Reference:
|
[27] Šaroch J.: Approximations and the Mittag-Leffler conditions the tools.Israel J. of Math. 226 (2018), no. 2, 737–756. MR 3819707, 10.1007/s11856-018-1710-4 |
Reference:
|
[28] Stenström B.: Rings of Quotients, An introduction to Methods of Ring Theory.Die Grundlehren der mathematischen Wissenschaften, 217, Springer, New York, 1975. MR 0389953 |
Reference:
|
[29] Teply M. L.: Torsionfree injective modules.Pacific J. Math. 28 (1969), no. 2, 441–453. MR 0242878, 10.2140/pjm.1969.28.441 |
Reference:
|
[30] Teply M. L.: Torsion-free covers. II.Israel J. Math. 23 (1976), no. 2, 132–136. MR 0417245 |
Reference:
|
[31] Trlifaj J.: Faith's problem on $R$-projectivity is undecidable.Proc. Amer. Math. Soc. 147 (2019), no. 2, 497–504. MR 3894889, 10.1090/proc/14209 |
Reference:
|
[32] Trlifaj J.: The dual Baer criterion for non-perfect rings.Forum Math. 32 (2020), no. 3, 663–672. MR 4095500, 10.1515/forum-2019-0028 |
Reference:
|
[33] Turnidge D. R.: Torsion theories and semihereditary rings.Proc. Amer. Math. Soc. 24 (1970), 137–143. MR 0255601, 10.1090/S0002-9939-1970-0255601-1 |
. |