Previous |  Up |  Next

Article

Keywords:
nonsingular module; $R$-projective module; flat module; perfect ring
Summary:
A right $R$-module $M$ is called $R$-projective provided that it is projective relative to the right $R$-module $R_{R}$. This paper deals with the rings whose all nonsingular right modules are $R$-projective. For a right nonsingular ring $R$, we prove that $R_{R}$ is of finite Goldie rank and all nonsingular right $R$-modules are $R$-projective if and only if $R$ is right finitely $\Sigma$-$CS$ and flat right $R$-modules are $R$-projective. Then, $R$-projectivity of the class of nonsingular injective right modules is also considered. Over right nonsingular rings of finite right Goldie rank, it is shown that $R$-projectivity of nonsingular injective right modules is equivalent to $R$-projectivity of the injective hull $E(R_{R})$. In this case, the injective hull $E(R_{R})$ has the decomposition $E(R_{R})=U_{R} \oplus V_{R}$, where $U$ is projective and $\operatorname{Hom}(V,R/I)=0$ for each right ideal $I$ of $R$. Finally, we focus on the right orthogonal class $\mathcal{N}^{\perp}$ of the class $\mathcal{N}$ of nonsingular right modules.
References:
[1] Alagöz Y., Büyükaşik E.: Max-projective modules. J. Algebra Appl. 20 (2021), no. 6, Paper No. 2150095, 25 pages. DOI 10.1142/S021949882150095X | MR 4256344
[2] Alhilali H., Ibrahim Y., Puninski G., Yousif M.: When $R$ is a testing module for projectivity?. J. Algebra 484 (2017), 198–206. DOI 10.1016/j.jalgebra.2017.04.010 | MR 3656718
[3] Amini B., Amini A., Ershad M.: Almost-perfect rings and modules. Comm. Algebra 37 (2009), no. 12, 4227–4240. DOI 10.1080/00927870902828918 | MR 2588845
[4] Amini A., Ershad M., Sharif H.: Rings over which flat covers of finitely generated modules are projective. Comm. Algebra 36 (2008), no. 8, 2862–2871. MR 2440285
[5] Anderson F. W., Fuller K. R.: Rings and Categories of Modules. Graduate Texts in Mathematics, 13, Springer, New York, 1992. DOI 10.1007/978-1-4612-4418-9_2 | MR 1245487 | Zbl 0765.16001
[6] Bican L.: Precovers and Goldie's torsion theory. Math. Bohem. 128 (2003), no. 4, 395–400. DOI 10.21136/MB.2003.134006 | MR 2032476
[7] Cheatham T. J.: Finite dimensional torsion-free rings. Pacific J. Math. 39 (1971), 113–118. DOI 10.2140/pjm.1971.39.113 | MR 0304430
[8] Dinh H. Q., Holston C. J., Huynh D. V.: Quasi-projective modules over prime hereditary Noetherian V-rings are projective or injective. J. Algebra 360 (2012), 87–91. DOI 10.1016/j.jalgebra.2012.04.002 | MR 2914635
[9] Dung N. V.: A note on hereditary rings or non-singular rings with chain condition. Math. Scand. 66 (1990), no. 2, 301–306. DOI 10.7146/math.scand.a-12313 | MR 1075146
[10] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R.: Extending Modules. Pitman Research Notes in Mathematics Series, 313, Longman Scientific & Technical, Harlow, John Wiley & Sons, New York, 1994. MR 1312366 | Zbl 0841.16001
[11] Durğun Y.: A generalization of $C$-rings. Ege Uni. J. of Faculty of Sci. 37 (2013), no. 2, 6–15.
[12] Enochs E. E., Jenda O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics, 30, Walter de Gruyter & Co., Berlin, 2000. MR 1753146 | Zbl 0952.13001
[13] Faith C.: When are proper cyclics injective?. Pacific J. Math. 45 (1973), 97–112. DOI 10.2140/pjm.1973.45.97 | MR 0320069
[14] Faith C.: Algebra. II. Ring Theory. Grundlehren der Mathematischen Wissenschaften, 191, Springer, Berlin, 1976. MR 0427349
[15] Göbel R., Trlifaj J.: Approximations and endomorphism algebras of modules. De Gruyter Expositions in Mathematics, 41, Walter de Gruyter GmbH & Co., Berlin, 2006. MR 2251271
[16] Golan J. S., Teply M. L.: Torsion-free covers. Israel J. Math. 15 (1973), 237–256. DOI 10.1007/BF02787570 | MR 0325687
[17] Goodearl K. R.: Ring Theory. Nonsingular Rings and Modules Pure and Applied Mathematics, 33, Marcel Dekker, New York, 1976. MR 0429962
[18] Hamsher R. M.: Commutative, noetherian rings over which every module has a maximal submodule. Proc. Amer. Math. Soc. 17 (1966), 1471–1472. MR 0200303
[19] Herbera D., Trlifaj J.: Almost free modules and Mittag–Leffler conditions. Adv. Math. 229 (2012), no. 6, 3436–3467. DOI 10.1016/j.aim.2012.02.013 | MR 2900444
[20] Holm H., Jørgensen P.: Covers, precovers, and purity. Illinois J. Math. 52 (2008), no. 2, 691–703. MR 2524661 | Zbl 1189.16007
[21] Ketkar R. D., Vanaja N.: $R$-projective modules over a semiperfect ring. Canad. Math. Bull. 24 (1981), no. 3, 365–367. DOI 10.4153/CMB-1981-055-x | MR 0632748
[22] Lam T. Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics, 189, Springer, New York, 1999. DOI 10.1007/978-1-4612-0525-8 | MR 1653294 | Zbl 0911.16001
[23] Lam T. Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics, 131, Springer, New York, 2001. DOI 10.1007/978-1-4419-8616-0 | MR 1838439 | Zbl 0980.16001
[24] Nicholson W. K.: Semiregular modules and rings. Canadian J. Math. 28 (1976), no. 5, 1105–1120. DOI 10.4153/CJM-1976-109-2 | MR 0422343
[25] Sandomierski F. L.: Relative Injectivity and Projectivity. Ph.D. Thesis, The Pennsylvania State University, ProQuest LLC, Ann Arbor, 1964. MR 2614575
[26] Sandomierski F. L.: Nonsingular rings. Proc. Amer. Math. Soc. 19 (1968), 225–230. DOI 10.1090/S0002-9939-1968-0219568-5 | MR 0219568
[27] Šaroch J.: Approximations and the Mittag-Leffler conditions the tools. Israel J. of Math. 226 (2018), no. 2, 737–756. DOI 10.1007/s11856-018-1710-4 | MR 3819707
[28] Stenström B.: Rings of Quotients, An introduction to Methods of Ring Theory. Die Grundlehren der mathematischen Wissenschaften, 217, Springer, New York, 1975. MR 0389953
[29] Teply M. L.: Torsionfree injective modules. Pacific J. Math. 28 (1969), no. 2, 441–453. DOI 10.2140/pjm.1969.28.441 | MR 0242878
[30] Teply M. L.: Torsion-free covers. II. Israel J. Math. 23 (1976), no. 2, 132–136. MR 0417245
[31] Trlifaj J.: Faith's problem on $R$-projectivity is undecidable. Proc. Amer. Math. Soc. 147 (2019), no. 2, 497–504. DOI 10.1090/proc/14209 | MR 3894889
[32] Trlifaj J.: The dual Baer criterion for non-perfect rings. Forum Math. 32 (2020), no. 3, 663–672. DOI 10.1515/forum-2019-0028 | MR 4095500
[33] Turnidge D. R.: Torsion theories and semihereditary rings. Proc. Amer. Math. Soc. 24 (1970), 137–143. DOI 10.1090/S0002-9939-1970-0255601-1 | MR 0255601
Partner of
EuDML logo