Previous |  Up |  Next

Article

Title: Limited $p$-converging operators and relation with some geometric properties of Banach spaces (English)
Author: Dehghani, Mohammad B.
Author: Moshtaghioun, Seyed M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 4
Year: 2021
Pages: 417-430
Summary lang: English
.
Category: math
.
Summary: By using the concepts of limited $p$-converging operators between two Banach spaces $X$ and $Y$, $L_p$-sets and $L_p$-limited sets in Banach spaces, we obtain some characterizations of these concepts relative to some well-known geometric properties of Banach spaces, such as $*$-Dunford--Pettis property of order $p$ and Pelczyński's property of order $p$, $1\leq p<\infty$. (English)
Keyword: Gelfand--Phillips property
Keyword: Schur property
Keyword: $p$-Schur property
Keyword: weakly $p$-compact set
Keyword: reciprocal Dunford--Pettis property of order $p$
MSC: 46B25
MSC: 47L05
idZBL: Zbl 07511570
idMR: MR4405813
DOI: 10.14712/1213-7243.2021.030
.
Date available: 2022-02-21T13:23:03Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149366
.
Reference: [1] Albiac F., Kalton N. J.: Topics in Banach Space Theory.Graduate Texts in Mathematics, 233, Springer, New York, 2006. Zbl 1094.46002, MR 2192298
Reference: [2] Bourgain J., Diestel J.: Limited operators and strict cosingularity.Math. Nachr. 119 (1984), 55–58. Zbl 0601.47019, MR 0774176, 10.1002/mana.19841190105
Reference: [3] Castillo J. M. F., Sanchez F.: Dunford–Pettis-like properties of continuous vector function spaces.Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. MR 1245024
Reference: [4] Castillo J. M. F., Sánchez F.: Weakly $p$-compact, $p$-Banach–Saks and super-reflexive Banach spaces.J. Math. Anal. Appl. 185 (1994), no. 2, 256–261. MR 1283055, 10.1006/jmaa.1994.1246
Reference: [5] Defant A., Floret K.: Tensor Norms and Operator Ideals.North-Holland Mathematics Studies, 176, North-Holland Publishing, Amsterdam, 1993. MR 1209438
Reference: [6] Dehghani M. B., Moshtaghioun S. M.: On the $p$-Schur property of Banach spaces.Ann. Funct. Anal. 9 (2018), no. 1, 123–136. MR 3758748, 10.1215/20088752-2017-0033
Reference: [7] Dehghani M. B., Moshtaghioun S. M., Dehghani M.: On the limited $p$-Schur property of some operator spaces.Int. J. Anal. Appl. 16 (2018), no. 1, 50–61. MR 3758748
Reference: [8] Dehghani M., Dehghani M. B., Moshtaghioun M. S.: Sequentially right Banach spaces of order $p$.Comment. Math. Univ. Carolin. 61 (2020), no. 1, 51–67. MR 4093429
Reference: [9] Delgado J. M., Piñeiro C.: A note on $p$-limited sets.J. Math. Anal. Appl. 410 (2014), no. 2, 713–718. MR 3111861, 10.1016/j.jmaa.2013.08.045
Reference: [10] Diestel J., Jarchow H., Tonge A.: Absolutely summing operators.Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. MR 1342297
Reference: [11] Drewnowski L.: On Banach spaces with the Gelfand–Phillips property.Math. Z. 193 (1986), no. 3, 405–411. MR 0862887, 10.1007/BF01229808
Reference: [12] Emmanuele G.: A dual characterization of Banach spaces not containing $\ell_1$.Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160. MR 0861172
Reference: [13] Fourie J. H., Zeekoei E. D.: $ DP^*$ properties of order $p$ on Banach spaces.Quaest. Math. 37 (2014), no. 3, 349–358. MR 3285289, 10.2989/16073606.2013.779611
Reference: [14] Fourie J. H., Zeekoei E. D.: On weak-star $p$-convergent operators.Quaest. Math. 40 (2017), no. 5, 563–579. MR 3691468, 10.2989/16073606.2017.1301591
Reference: [15] Ghenciu I., Lewis P.: The Dunford–Pettis property, the Gelfand–Phillips property, and $L$-sets.Colloq. Math. 106 (2006), no. 2, 311–324. MR 2283818, 10.4064/cm106-2-11
Reference: [16] Grothendieck A.: Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$.Canad. J. Math. 5 (1953), 129–173 (French). Zbl 0050.10902, MR 0058866, 10.4153/CJM-1953-017-4
Reference: [17] Karn A. K., Sinha D. P.: An operator summability of sequences in Banach spaces.Glasg. Math. J. 56 (2014), no. 2, 427–437. MR 3187909, 10.1017/S0017089513000360
Reference: [18] Li L., Chen D., Chávez-Domínguez J. A.: Pelczyński's property ($V^*$) of order $p$ and its quantification.Math. Nachr. 291 (2018), no. 2–3, 420–442. MR 3767145, 10.1002/mana.201600335
Reference: [19] Moshtaghioun S. M., Zafarani J.: Completely continuous subspaces of operator ideals.Taiwanese J. Math. 10 (2006), no. 3, 691–698. MR 2206322, 10.11650/twjm/1500403855
Reference: [20] Pelczyński A.: Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. MR 0149295
Reference: [21] Ruess W.: Duality and geometry of spaces of compact operators.Functional Analysis: Surveys and Recent Results III, Paderborn, 1983, North-Holland Math. Stud., 90, Notas Mat., 94, North-Holland, Amsterdam, 1984, pages 59–78. Zbl 0573.46007, MR 0761373, 10.1016/S0304-0208(08)71467-1
Reference: [22] Ryan R. A.: Introduction to Tensor Products of Banach Spaces.Springer Monographs in Mathematics, Springer, London, 2002. Zbl 1090.46001, MR 1888309
Reference: [23] Salimi M., Moshtaghioun S. M.: The Gelfand–Phillips property in closed subspaces of some operator spaces.Banach J. Math. Anal. 5 (2011), no. 2, 84–92. MR 2792501, 10.15352/bjma/1313363004
Reference: [24] Schlumprecht T.: Limited sets in injective tensor products.Functional Analysis, Austin, 1987/1989, Lecture Notes in Math., 1470, Longhorn Notes, Springer, Berlin, 1991, pages 133–158. MR 1126743
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-4_3.pdf 240.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo