Title:
|
Some results on the class of $\sigma$-unbounded Dunford-Pettis operators (English) |
Author:
|
Hafidi, Noufissa |
Author:
|
H'michane, Jawad |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
62 |
Issue:
|
4 |
Year:
|
2021 |
Pages:
|
431-443 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We introduce and study the class of unbounded Dunford--Pettis operators. As consequences, we give basic properties and derive interesting results about the duality, domination problem and relationship with other known classes of operators. (English) |
Keyword:
|
$\sigma$-un-Dunford--Pettis operator |
Keyword:
|
unbounded norm convergence |
Keyword:
|
order continuous Banach lattice |
Keyword:
|
atomic Banach lattice |
Keyword:
|
relatively sequentially un-compact set |
Keyword:
|
Schur property |
MSC:
|
46B42 |
MSC:
|
47B60 |
MSC:
|
47B65 |
idZBL:
|
Zbl 07511571 |
idMR:
|
MR4405814 |
DOI:
|
10.14712/1213-7243.2021.035 |
. |
Date available:
|
2022-02-21T13:24:18Z |
Last updated:
|
2024-01-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149367 |
. |
Reference:
|
[1] Aliprantis C. D., Burkinshaw O.: Positive Operators.reprint of the 1985 original, Springer, Dordrecht, 2006. Zbl 1098.47001, MR 2262133 |
Reference:
|
[2] Aqzzouz B., Elbour A., H'michane J.: The duality problem for the class of $b$-weakly compact operators.Positivity 13 (2009), no. 4, 683–692. MR 2538515, 10.1007/s11117-008-2288-6 |
Reference:
|
[3] Aqzzouz B., H'michane J.: Some results on order weakly compact operators.Math. Bohem. 134 (2009), no. 4, 359–367. MR 2597231, 10.21136/MB.2009.140668 |
Reference:
|
[4] Deng Y., O’Brien M., Troitsky V. G.: Unbounded norm convergence in Banach lattices.Positivity 21 (2017), no. 3, 963–974. MR 3688941, 10.1007/s11117-016-0446-9 |
Reference:
|
[5] Gao N.: Unbounded order convergence in dual spaces.J. Math. Anal. Appl. 419 (2014), no. 1, 347–354. MR 3217153, 10.1016/j.jmaa.2014.04.067 |
Reference:
|
[6] Gao N., Xanthos F.: Unbounded order convergence and application to martingales without probability.J. Math. Anal. Appl. 415 (2014), no. 2, 931–947. MR 3178299, 10.1016/j.jmaa.2014.01.078 |
Reference:
|
[7] Kandić M., Li H., Troitsky V. G.: Unbounded norm topology beyond normed lattices.Positivity 22 (2018), no. 3, 745–760. MR 3817116, 10.1007/s11117-017-0541-6 |
Reference:
|
[8] Kandić M., Marabeh M. A. A., Troitsky V. G.: Unbounded norm topology in Banach lattices.J. Math. Anal. Appl. 451 (2017), no. 1, 259–279. MR 3619237, 10.1016/j.jmaa.2017.01.041 |
Reference:
|
[9] Meyer-Nieberg P.: Banach Lattices.Universitext, Springer, Berlin, 1991. Zbl 0743.46015, MR 1128093 |
Reference:
|
[10] Nakano H.: Ergodic theorems in semi-ordered linear spaces.Ann. of Math. (20) 49 (1948), no. 2, 538–556. MR 0029112, 10.2307/1969044 |
Reference:
|
[11] Wang Z., Chen Z., Chen J.: Continuous operators for unbounded convergence in Banach lattices.available at arXiv:1903.04854 [math.FA] (2021), 9 pages. MR 4293863 |
Reference:
|
[12] Wickstead A. W.: Weak and unbounded order convergence in Banach lattices.J. Austral. Math. Soc. Ser. A 24 (1977), no. 3, 312–319. MR 0482060, 10.1017/S1446788700020346 |
Reference:
|
[13] Zaanen A. C.: Riesz Spaces. II.North-Holland Mathematical Library, 30, North-Holland Publishing Company, Amsterdam, 1983. MR 0704021 |
. |