Previous |  Up |  Next

Article

Title: Some results on the class of $\sigma$-unbounded Dunford-Pettis operators (English)
Author: Hafidi, Noufissa
Author: H'michane, Jawad
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 4
Year: 2021
Pages: 431-443
Summary lang: English
.
Category: math
.
Summary: We introduce and study the class of unbounded Dunford--Pettis operators. As consequences, we give basic properties and derive interesting results about the duality, domination problem and relationship with other known classes of operators. (English)
Keyword: $\sigma$-un-Dunford--Pettis operator
Keyword: unbounded norm convergence
Keyword: order continuous Banach lattice
Keyword: atomic Banach lattice
Keyword: relatively sequentially un-compact set
Keyword: Schur property
MSC: 46B42
MSC: 47B60
MSC: 47B65
idZBL: Zbl 07511571
idMR: MR4405814
DOI: 10.14712/1213-7243.2021.035
.
Date available: 2022-02-21T13:24:18Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149367
.
Reference: [1] Aliprantis C. D., Burkinshaw O.: Positive Operators.reprint of the 1985 original, Springer, Dordrecht, 2006. Zbl 1098.47001, MR 2262133
Reference: [2] Aqzzouz B., Elbour A., H'michane J.: The duality problem for the class of $b$-weakly compact operators.Positivity 13 (2009), no. 4, 683–692. MR 2538515, 10.1007/s11117-008-2288-6
Reference: [3] Aqzzouz B., H'michane J.: Some results on order weakly compact operators.Math. Bohem. 134 (2009), no. 4, 359–367. MR 2597231, 10.21136/MB.2009.140668
Reference: [4] Deng Y., O’Brien M., Troitsky V. G.: Unbounded norm convergence in Banach lattices.Positivity 21 (2017), no. 3, 963–974. MR 3688941, 10.1007/s11117-016-0446-9
Reference: [5] Gao N.: Unbounded order convergence in dual spaces.J. Math. Anal. Appl. 419 (2014), no. 1, 347–354. MR 3217153, 10.1016/j.jmaa.2014.04.067
Reference: [6] Gao N., Xanthos F.: Unbounded order convergence and application to martingales without probability.J. Math. Anal. Appl. 415 (2014), no. 2, 931–947. MR 3178299, 10.1016/j.jmaa.2014.01.078
Reference: [7] Kandić M., Li H., Troitsky V. G.: Unbounded norm topology beyond normed lattices.Positivity 22 (2018), no. 3, 745–760. MR 3817116, 10.1007/s11117-017-0541-6
Reference: [8] Kandić M., Marabeh M. A. A., Troitsky V. G.: Unbounded norm topology in Banach lattices.J. Math. Anal. Appl. 451 (2017), no. 1, 259–279. MR 3619237, 10.1016/j.jmaa.2017.01.041
Reference: [9] Meyer-Nieberg P.: Banach Lattices.Universitext, Springer, Berlin, 1991. Zbl 0743.46015, MR 1128093
Reference: [10] Nakano H.: Ergodic theorems in semi-ordered linear spaces.Ann. of Math. (20) 49 (1948), no. 2, 538–556. MR 0029112, 10.2307/1969044
Reference: [11] Wang Z., Chen Z., Chen J.: Continuous operators for unbounded convergence in Banach lattices.available at arXiv:1903.04854 [math.FA] (2021), 9 pages. MR 4293863
Reference: [12] Wickstead A. W.: Weak and unbounded order convergence in Banach lattices.J. Austral. Math. Soc. Ser. A 24 (1977), no. 3, 312–319. MR 0482060, 10.1017/S1446788700020346
Reference: [13] Zaanen A. C.: Riesz Spaces. II.North-Holland Mathematical Library, 30, North-Holland Publishing Company, Amsterdam, 1983. MR 0704021
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-4_4.pdf 220.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo