Title:
|
Further generalized versions of Ilmanen's lemma on insertion of $C^{1,\omega}$ or $C^{1,\omega}_{\text{\rm loc}}$ functions (English) |
Author:
|
Kryštof, Václav |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
62 |
Issue:
|
4 |
Year:
|
2021 |
Pages:
|
445-455 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The author proved in 2018 that if $ G $ is an open subset of a Hilbert space, $ f_1,f_2\colon G\to\mathbb{R} $ continuous functions and $ \omega $ a nontrivial modulus such that $ f_1\leq f_2 $, $ f_1 $ is locally semiconvex with modulus $ \omega $ and $ f_2 $ is locally semiconcave with modulus $ \omega $, then there exists $ f\in C^{1,\omega}_{\text{loc}}(G) $ such that $ f_1\leq f\leq f_2 $. This is a generalization of Ilmanen's lemma (which deals with linear modulus and functions on an open subset of $ \mathbb{R}^{n} $). Here we extend the mentioned result from Hilbert spaces to some superreflexive spaces, in particular to $ L^p $ spaces, $ p\in[2,\infty) $. We also prove a ``global" version of Ilmanen's lemma (where a $ C^{1,\omega} $ function is inserted between functions on an interval $ I\subset\mathbb{R} $). (English) |
Keyword:
|
Ilmanen's lemma |
Keyword:
|
$ C^{1,\omega} $ function |
Keyword:
|
semiconvex function with general modulus |
MSC:
|
26B25 |
idZBL:
|
Zbl 07511572 |
idMR:
|
MR4405815 |
DOI:
|
10.14712/1213-7243.2021.031 |
. |
Date available:
|
2022-02-21T13:25:17Z |
Last updated:
|
2024-01-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149368 |
. |
Reference:
|
[1] Benyamini Y., Lindenstrauss J.: Geometric Nonlinear Functional Analysis.Vol. 1, American Mathematical Society Colloquium Publications, 48, American Mathematical Society, Providence, 2000. Zbl 0946.46002, MR 1727673 |
Reference:
|
[2] Bernard P.: Lasry–Lions regularization and a lemma of Ilmanen.Rend. Sem. Mat. Univ. Padova 124 (2010), 221–229. MR 2752687, 10.4171/RSMUP/124-15 |
Reference:
|
[3] Cannarsa P., Sinestrari C.: Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control.Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004. MR 2041617 |
Reference:
|
[4] Deville R., Godefroy G., Zizler V.: Smoothness and Renormings in Banach Spaces.Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific & Technical, Harlow, John Wiley & Sons, New York, 1993. Zbl 0782.46019, MR 1211634 |
Reference:
|
[5] Duda J., Zajíček L.: Semiconvex functions: representations as suprema of smooth functions and extensions.J. Convex Anal. 16 (2009), no. 1, 239–260. MR 2531202 |
Reference:
|
[6] Duda J., Zajíček L.: Smallness of singular sets of semiconvex functions in separable Banach spaces.J. Convex Anal. 20 (2013), no, 2, 573–598. MR 3098482 |
Reference:
|
[7] Hájek P., Johanis M.: Smooth Analysis in Banach Spaces.De Gruyter Series in Nonlinear Analysis and Applications, 19, De Gruyter, Berlin, 2014. Zbl 1329.00102, MR 3244144 |
Reference:
|
[8] Ilmanen T.: The level-set flow on a manifold.Differential Geometry: Partial Differential Equations on Manifolds, Los Angeles, 1990, Proc. Sympos. Pure Math. 54 (1993), Part 1, 193–204. MR 1216585 |
Reference:
|
[9] Kryštof V.: Generalized versions of Ilmanen lemma: insertion of $ C^{1,\omega} $ or $ C^{1,\omega}_{ loc} $ functions.Comment. Math. Univ. Carolin. 59 (2018), no. 2, 223–231. MR 3815687 |
. |