Previous |  Up |  Next

Article

Title: Further generalized versions of Ilmanen's lemma on insertion of $C^{1,\omega}$ or $C^{1,\omega}_{\text{\rm loc}}$ functions (English)
Author: Kryštof, Václav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 4
Year: 2021
Pages: 445-455
Summary lang: English
.
Category: math
.
Summary: The author proved in 2018 that if $ G $ is an open subset of a Hilbert space, $ f_1,f_2\colon G\to\mathbb{R} $ continuous functions and $ \omega $ a nontrivial modulus such that $ f_1\leq f_2 $, $ f_1 $ is locally semiconvex with modulus $ \omega $ and $ f_2 $ is locally semiconcave with modulus $ \omega $, then there exists $ f\in C^{1,\omega}_{\text{loc}}(G) $ such that $ f_1\leq f\leq f_2 $. This is a generalization of Ilmanen's lemma (which deals with linear modulus and functions on an open subset of $ \mathbb{R}^{n} $). Here we extend the mentioned result from Hilbert spaces to some superreflexive spaces, in particular to $ L^p $ spaces, $ p\in[2,\infty) $. We also prove a ``global" version of Ilmanen's lemma (where a $ C^{1,\omega} $ function is inserted between functions on an interval $ I\subset\mathbb{R} $). (English)
Keyword: Ilmanen's lemma
Keyword: $ C^{1,\omega} $ function
Keyword: semiconvex function with general modulus
MSC: 26B25
idZBL: Zbl 07511572
idMR: MR4405815
DOI: 10.14712/1213-7243.2021.031
.
Date available: 2022-02-21T13:25:17Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149368
.
Reference: [1] Benyamini Y., Lindenstrauss J.: Geometric Nonlinear Functional Analysis.Vol. 1, American Mathematical Society Colloquium Publications, 48, American Mathematical Society, Providence, 2000. Zbl 0946.46002, MR 1727673
Reference: [2] Bernard P.: Lasry–Lions regularization and a lemma of Ilmanen.Rend. Sem. Mat. Univ. Padova 124 (2010), 221–229. MR 2752687, 10.4171/RSMUP/124-15
Reference: [3] Cannarsa P., Sinestrari C.: Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control.Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004. MR 2041617
Reference: [4] Deville R., Godefroy G., Zizler V.: Smoothness and Renormings in Banach Spaces.Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific & Technical, Harlow, John Wiley & Sons, New York, 1993. Zbl 0782.46019, MR 1211634
Reference: [5] Duda J., Zajíček L.: Semiconvex functions: representations as suprema of smooth functions and extensions.J. Convex Anal. 16 (2009), no. 1, 239–260. MR 2531202
Reference: [6] Duda J., Zajíček L.: Smallness of singular sets of semiconvex functions in separable Banach spaces.J. Convex Anal. 20 (2013), no, 2, 573–598. MR 3098482
Reference: [7] Hájek P., Johanis M.: Smooth Analysis in Banach Spaces.De Gruyter Series in Nonlinear Analysis and Applications, 19, De Gruyter, Berlin, 2014. Zbl 1329.00102, MR 3244144
Reference: [8] Ilmanen T.: The level-set flow on a manifold.Differential Geometry: Partial Differential Equations on Manifolds, Los Angeles, 1990, Proc. Sympos. Pure Math. 54 (1993), Part 1, 193–204. MR 1216585
Reference: [9] Kryštof V.: Generalized versions of Ilmanen lemma: insertion of $ C^{1,\omega} $ or $ C^{1,\omega}_{ loc} $ functions.Comment. Math. Univ. Carolin. 59 (2018), no. 2, 223–231. MR 3815687
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-4_5.pdf 217.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo