Title:
|
The (dis)connectedness of products of Hausdorff spaces in the box topology (English) |
Author:
|
Chatyrko, Vitalij A. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
62 |
Issue:
|
4 |
Year:
|
2021 |
Pages:
|
483-489 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper the following two propositions are proved: (a) If $X_\alpha$, $\alpha \in A$, is an infinite system of connected spaces such that infinitely many of them are nondegenerated completely Hausdorff topological spaces then the box product $\square_{\alpha \in A} X_\alpha$ can be decomposed into continuum many disjoint nonempty open subsets, in particular, it is disconnected. (b) If $X_\alpha$, $\alpha \in A$, is an infinite system of Brown Hausdorff topological spaces then the box product $\square_{\alpha \in A} X_\alpha$ is also Brown Hausdorff, and hence, it is connected. A space is Brown if for every pair of its open nonempty subsets there exists a point common to their closures. There are many examples of countable Brown Hausdorff spaces in literature. (English) |
Keyword:
|
box topology |
Keyword:
|
connectedness |
Keyword:
|
completely Hausdorff space |
Keyword:
|
Urysohn space |
Keyword:
|
Brown space |
MSC:
|
54B10 |
MSC:
|
54D05 |
MSC:
|
54D10 |
idZBL:
|
Zbl 07511575 |
idMR:
|
MR4405818 |
DOI:
|
10.14712/1213-7243.2022.001 |
. |
Date available:
|
2022-02-21T13:30:13Z |
Last updated:
|
2024-01-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149371 |
. |
Reference:
|
[1] Acosta G., Madriz-Mendoza M., Dominguez J. D. C. A.: Brown spaces and the Golomb topology.Open Acc. J. Math. Theor. Phy. 1 (2018), no. 6, 242–247. 10.15406/oajmtp.2018.01.00042 |
Reference:
|
[2] Bing R. H.: A connected countable Hausdorff space.Proc. Amer. Math. Soc. 4 (1953), 474. MR 0060806, 10.1090/S0002-9939-1953-0060806-9 |
Reference:
|
[3] Chatyrko V. A., Karassev A.: The (dis)connectedness of products in the box topology.Questions Answers Gen. Topology 31 (2013), no. 1, 11–21. MR 3075890 |
Reference:
|
[4] Chatyrko V. A., Nyagahakwa V.: Vitali selectors in topological groups and related semigroups of sets.Questions Answers Gen. Topology 33 (2015), no. 2, 93–102. MR 3444173 |
Reference:
|
[5] Golomb S. W.: A connected topology for integers.Amer. Math. Monthly 66 8 (1959), no. 8, 663–665. MR 0107622 |
Reference:
|
[6] Halimskiĭ E. D.: The topologies of generalized segments.Dokl. Akad. Nauk SSSR 189 (1969), 740–743. MR 0256359 |
Reference:
|
[7] Hewitt E.: On two problems of Urysohn.Ann. of Math. 47 (1946), no. 3, 503–509. MR 0017527, 10.2307/1969089 |
Reference:
|
[8] Jones F. B., Stone A. H.: Countable locally connected Urysohn spaces.Colloq. Math. 22 (1971), 239–244. MR 0283764, 10.4064/cm-22-2-239-244 |
Reference:
|
[9] Kannan V., Rajagopalan M.: On countable locally connected spaces.Colloq. Math. 29 (1974), 93–100, 159. MR 0339068, 10.4064/cm-29-1-93-100 |
Reference:
|
[10] Kirch A. M.: A countable connected, locally connected Hausdorff space.Amer. Math. Monthly 76 (1969), 169–171. MR 0239563, 10.1080/00029890.1969.12000163 |
Reference:
|
[11] Knight C. J.: Box topologies.Quart. J. Math. Oxford Ser. (2) 15 (1964), 41–54. MR 0160184 |
Reference:
|
[12] Kong T. Y., Kopperman R., Meyer P. R.: A topological approach to digital topology.Amer. Math. Monthly 98 (1991), no. 10, 901–917. MR 1137537, 10.1080/00029890.1991.12000810 |
Reference:
|
[13] Lawrence L. B.: Infinite-dimensional countable connected Hausdorff spaces.Houston J. Math. 20 (1994), no. 3, 539–546. MR 1287993 |
Reference:
|
[14] Miller G. G.: Countable connected spaces.Proc. Amer. Math. Soc. 26 (1970), 355–360. MR 0263005, 10.1090/S0002-9939-1970-0263005-0 |
Reference:
|
[15] Munkres J. R.: Topology.Prentice Hall, Upper Saddle River, 2000. Zbl 0951.54001, MR 3728284 |
Reference:
|
[16] Ritter G. X.: A connected locally connected, countable Hausdorff space.Amer. Math. Monthly 83 (1976), no. 3, 185–186. MR 0391047, 10.1080/00029890.1976.11994070 |
Reference:
|
[17] Roy P.: A countable connected Urysohn space with a dispersion point.Duke Math. J. 33 (1966), 331–333. MR 0196701 |
Reference:
|
[18] Shimrat M.: Embedding in homogeneous spaces.Quart. J. Math. Oxford Ser. (2) 5 (1954), 304–311. MR 0068204, 10.1093/qmath/5.1.304 |
Reference:
|
[19] Vought E. J.: A countable connected Urysohn space with a dispersion point that is regular almost everywhere.Colloq. Math. 28 (1973), 205–209. MR 0326655, 10.4064/cm-28-2-205-209 |
. |