Previous |  Up |  Next

Article

Title: The (dis)connectedness of products of Hausdorff spaces in the box topology (English)
Author: Chatyrko, Vitalij A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 4
Year: 2021
Pages: 483-489
Summary lang: English
.
Category: math
.
Summary: In this paper the following two propositions are proved: (a) If $X_\alpha$, $\alpha \in A$, is an infinite system of connected spaces such that infinitely many of them are nondegenerated completely Hausdorff topological spaces then the box product $\square_{\alpha \in A} X_\alpha$ can be decomposed into continuum many disjoint nonempty open subsets, in particular, it is disconnected. (b) If $X_\alpha$, $\alpha \in A$, is an infinite system of Brown Hausdorff topological spaces then the box product $\square_{\alpha \in A} X_\alpha$ is also Brown Hausdorff, and hence, it is connected. A space is Brown if for every pair of its open nonempty subsets there exists a point common to their closures. There are many examples of countable Brown Hausdorff spaces in literature. (English)
Keyword: box topology
Keyword: connectedness
Keyword: completely Hausdorff space
Keyword: Urysohn space
Keyword: Brown space
MSC: 54B10
MSC: 54D05
MSC: 54D10
idZBL: Zbl 07511575
idMR: MR4405818
DOI: 10.14712/1213-7243.2022.001
.
Date available: 2022-02-21T13:30:13Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149371
.
Reference: [1] Acosta G., Madriz-Mendoza M., Dominguez J. D. C. A.: Brown spaces and the Golomb topology.Open Acc. J. Math. Theor. Phy. 1 (2018), no. 6, 242–247. 10.15406/oajmtp.2018.01.00042
Reference: [2] Bing R. H.: A connected countable Hausdorff space.Proc. Amer. Math. Soc. 4 (1953), 474. MR 0060806, 10.1090/S0002-9939-1953-0060806-9
Reference: [3] Chatyrko V. A., Karassev A.: The (dis)connectedness of products in the box topology.Questions Answers Gen. Topology 31 (2013), no. 1, 11–21. MR 3075890
Reference: [4] Chatyrko V. A., Nyagahakwa V.: Vitali selectors in topological groups and related semigroups of sets.Questions Answers Gen. Topology 33 (2015), no. 2, 93–102. MR 3444173
Reference: [5] Golomb S. W.: A connected topology for integers.Amer. Math. Monthly 66 8 (1959), no. 8, 663–665. MR 0107622
Reference: [6] Halimskiĭ E. D.: The topologies of generalized segments.Dokl. Akad. Nauk SSSR 189 (1969), 740–743. MR 0256359
Reference: [7] Hewitt E.: On two problems of Urysohn.Ann. of Math. 47 (1946), no. 3, 503–509. MR 0017527, 10.2307/1969089
Reference: [8] Jones F. B., Stone A. H.: Countable locally connected Urysohn spaces.Colloq. Math. 22 (1971), 239–244. MR 0283764, 10.4064/cm-22-2-239-244
Reference: [9] Kannan V., Rajagopalan M.: On countable locally connected spaces.Colloq. Math. 29 (1974), 93–100, 159. MR 0339068, 10.4064/cm-29-1-93-100
Reference: [10] Kirch A. M.: A countable connected, locally connected Hausdorff space.Amer. Math. Monthly 76 (1969), 169–171. MR 0239563, 10.1080/00029890.1969.12000163
Reference: [11] Knight C. J.: Box topologies.Quart. J. Math. Oxford Ser. (2) 15 (1964), 41–54. MR 0160184
Reference: [12] Kong T. Y., Kopperman R., Meyer P. R.: A topological approach to digital topology.Amer. Math. Monthly 98 (1991), no. 10, 901–917. MR 1137537, 10.1080/00029890.1991.12000810
Reference: [13] Lawrence L. B.: Infinite-dimensional countable connected Hausdorff spaces.Houston J. Math. 20 (1994), no. 3, 539–546. MR 1287993
Reference: [14] Miller G. G.: Countable connected spaces.Proc. Amer. Math. Soc. 26 (1970), 355–360. MR 0263005, 10.1090/S0002-9939-1970-0263005-0
Reference: [15] Munkres J. R.: Topology.Prentice Hall, Upper Saddle River, 2000. Zbl 0951.54001, MR 3728284
Reference: [16] Ritter G. X.: A connected locally connected, countable Hausdorff space.Amer. Math. Monthly 83 (1976), no. 3, 185–186. MR 0391047, 10.1080/00029890.1976.11994070
Reference: [17] Roy P.: A countable connected Urysohn space with a dispersion point.Duke Math. J. 33 (1966), 331–333. MR 0196701
Reference: [18] Shimrat M.: Embedding in homogeneous spaces.Quart. J. Math. Oxford Ser. (2) 5 (1954), 304–311. MR 0068204, 10.1093/qmath/5.1.304
Reference: [19] Vought E. J.: A countable connected Urysohn space with a dispersion point that is regular almost everywhere.Colloq. Math. 28 (1973), 205–209. MR 0326655, 10.4064/cm-28-2-205-209
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-4_8.pdf 191.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo