Title:
|
A study of universal elements in classes of bases of topological spaces (English) |
Author:
|
Georgiou, Dimitris N. |
Author:
|
Megaritis, Athanasios C. |
Author:
|
Naidoo, Inderasan |
Author:
|
Sereti, Fotini |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
62 |
Issue:
|
4 |
Year:
|
2021 |
Pages:
|
491-506 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The universality problem focuses on finding universal spaces in classes of topological spaces. Moreover, in ``Universal spaces and mappings'' by S. D. Iliadis (2005), an important method of constructing such universal elements in classes of spaces is introduced and explained in details. Simultaneously, in ``A topological dimension greater than or equal to the classical covering dimension'' by D. N. Georgiou, A. C. Megaritis and F. Sereti (2017), new topological dimension is introduced and studied, which is called quasi covering dimension and is denoted by $\dim_{q}$. In this paper, we define the base dimension-like function of the type dim$_{q}$, denoted by {b} - {dim}$^{\rm I F}_{q}$, and study the property of universality for this function. Especially, based on the method of ``Universal spaces and mappings'' by S. D. Iliadis (2005), we prove that in classes of bases which are determined by {b} - {dim}$^{\rm I F}_{q}$ there exist universal elements. (English) |
Keyword:
|
topological dimension |
Keyword:
|
universality property |
Keyword:
|
quasi covering dimension |
MSC:
|
54F45 |
idZBL:
|
Zbl 07511576 |
idMR:
|
MR4405819 |
DOI:
|
10.14712/1213-7243.2021.027 |
. |
Date available:
|
2022-02-21T13:31:20Z |
Last updated:
|
2024-01-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149372 |
. |
Reference:
|
[1] Engelking R.: Theory of Dimensions Finite and Infinite.Sigma Series in Pure Mathematics, 10, Heldermann Verlag, Lemgo, 1995. Zbl 0872.54002, MR 1363947 |
Reference:
|
[2] Georgiou D. N., Megaritis A. C.: Covering dimension and finite spaces.Appl. Math. Comput. 218 (2011), no. 7, 3122–3130. MR 2851414 |
Reference:
|
[3] Georgiou D. N., Megaritis A. C.: An algorithm of polynomial order for computing the covering dimension of a finite space.Appl. Math. Comput. 231 (2014), 276–283. MR 3174030 |
Reference:
|
[4] Georgiou D. N., Megaritis A. C., Sereti F.: A study of the quasi covering dimension for finite spaces through the matrix theory.Hacet. J. Math. Stat. 46 (2017), no. 1, 111–125. MR 3585619 |
Reference:
|
[5] Georgiou D. N., Megaritis A. C., Sereti F.: A topological dimension greater than or equal to the classical covering dimension.Houston J. Math. 43 (2017), no. 1, 283–298. MR 3647946 |
Reference:
|
[6] Georgiou D. N., Megaritis A. C., Sereti F.: Base dimension-like function of the type Dind and universality.Topology Appl. 281 (2020), 107201, 11 pages. MR 4174601, 10.1016/j.topol.2020.107201 |
Reference:
|
[7] Iliadis S.: A construction of containing spaces.Topology Appl. 107 (2000), no. 1–2, 97–116. MR 1783837, 10.1016/S0166-8641(00)90095-6 |
Reference:
|
[8] Iliadis S. D.: Universal Spaces and Mappings.North-Holland Mathematics Studies, 198, Elsevier, Amsterdam, 2005. MR 2126150 |
Reference:
|
[9] Nagami K.: Dimension Theory.Pure and Applied Mathematics, 37, Academic Press, New York, 1970. Zbl 0224.54060, MR 0271918 |
Reference:
|
[10] Nagata J.: Modern Dimension Theory.Sigma Series in Pure Mathematics, 2, Heldermann Verlag, Berlin, 1983. Zbl 0518.54002, MR 0715431 |
Reference:
|
[11] Pears A. R.: Dimension Theory of General Spaces.Cambridge University Press, Cambridge, 1975. Zbl 0312.54001, MR 0394604 |
. |