Previous |  Up |  Next

Article

Title: A study of universal elements in classes of bases of topological spaces (English)
Author: Georgiou, Dimitris N.
Author: Megaritis, Athanasios C.
Author: Naidoo, Inderasan
Author: Sereti, Fotini
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 4
Year: 2021
Pages: 491-506
Summary lang: English
.
Category: math
.
Summary: The universality problem focuses on finding universal spaces in classes of topological spaces. Moreover, in ``Universal spaces and mappings'' by S. D. Iliadis (2005), an important method of constructing such universal elements in classes of spaces is introduced and explained in details. Simultaneously, in ``A topological dimension greater than or equal to the classical covering dimension'' by D. N. Georgiou, A. C. Megaritis and F. Sereti (2017), new topological dimension is introduced and studied, which is called quasi covering dimension and is denoted by $\dim_{q}$. In this paper, we define the base dimension-like function of the type dim$_{q}$, denoted by {b} - {dim}$^{\rm I F}_{q}$, and study the property of universality for this function. Especially, based on the method of ``Universal spaces and mappings'' by S. D. Iliadis (2005), we prove that in classes of bases which are determined by {b} - {dim}$^{\rm I F}_{q}$ there exist universal elements. (English)
Keyword: topological dimension
Keyword: universality property
Keyword: quasi covering dimension
MSC: 54F45
idZBL: Zbl 07511576
idMR: MR4405819
DOI: 10.14712/1213-7243.2021.027
.
Date available: 2022-02-21T13:31:20Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149372
.
Reference: [1] Engelking R.: Theory of Dimensions Finite and Infinite.Sigma Series in Pure Mathematics, 10, Heldermann Verlag, Lemgo, 1995. Zbl 0872.54002, MR 1363947
Reference: [2] Georgiou D. N., Megaritis A. C.: Covering dimension and finite spaces.Appl. Math. Comput. 218 (2011), no. 7, 3122–3130. MR 2851414
Reference: [3] Georgiou D. N., Megaritis A. C.: An algorithm of polynomial order for computing the covering dimension of a finite space.Appl. Math. Comput. 231 (2014), 276–283. MR 3174030
Reference: [4] Georgiou D. N., Megaritis A. C., Sereti F.: A study of the quasi covering dimension for finite spaces through the matrix theory.Hacet. J. Math. Stat. 46 (2017), no. 1, 111–125. MR 3585619
Reference: [5] Georgiou D. N., Megaritis A. C., Sereti F.: A topological dimension greater than or equal to the classical covering dimension.Houston J. Math. 43 (2017), no. 1, 283–298. MR 3647946
Reference: [6] Georgiou D. N., Megaritis A. C., Sereti F.: Base dimension-like function of the type Dind and universality.Topology Appl. 281 (2020), 107201, 11 pages. MR 4174601, 10.1016/j.topol.2020.107201
Reference: [7] Iliadis S.: A construction of containing spaces.Topology Appl. 107 (2000), no. 1–2, 97–116. MR 1783837, 10.1016/S0166-8641(00)90095-6
Reference: [8] Iliadis S. D.: Universal Spaces and Mappings.North-Holland Mathematics Studies, 198, Elsevier, Amsterdam, 2005. MR 2126150
Reference: [9] Nagami K.: Dimension Theory.Pure and Applied Mathematics, 37, Academic Press, New York, 1970. Zbl 0224.54060, MR 0271918
Reference: [10] Nagata J.: Modern Dimension Theory.Sigma Series in Pure Mathematics, 2, Heldermann Verlag, Berlin, 1983. Zbl 0518.54002, MR 0715431
Reference: [11] Pears A. R.: Dimension Theory of General Spaces.Cambridge University Press, Cambridge, 1975. Zbl 0312.54001, MR 0394604
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-4_9.pdf 249.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo