Previous |  Up |  Next

Article

Title: Seeking a network characterization of Corson compacta (English)
Author: Feng, Ziqin
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 4
Year: 2021
Pages: 513-521
Summary lang: English
.
Category: math
.
Summary: We say that a collection $\mathcal{A}$ of subsets of $X$ has property $(CC)$ if there is a set $D$ and point-countable collections $\mathcal{C}$ of closed subsets of $X$ such that for any $A\in \mathcal{A}$ there is a finite subcollection $\mathcal{F}$ of $\mathcal{C}$ such that $A=D\setminus \bigcup \mathcal{F}$. Then we prove that any compact space is Corson if and only if it has a point-$\sigma$-$(CC)$ base. A characterization of Corson compacta in terms of (strong) point network is also given. This provides an answer to an open question in ``A Biased View of Topology as a Tool in Functional Analysis'' (2014) by B. Cascales and J. Orihuela and as in ``Network characterization of Gul'ko compact spaces and their relatives'' (2004) by F. Garcia, L. Oncina, J. Orihuela, which asked whether there is a network characterization of the class of Corson compacta. (English)
Keyword: Corson compacta
Keyword: point network
Keyword: condition (F)
Keyword: almost subbase
Keyword: additively $\aleph_0$-Noetherian
MSC: 46B50
MSC: 54D30
idZBL: Zbl 07511578
idMR: MR4405821
DOI: 10.14712/1213-7243.2022.002
.
Date available: 2022-02-21T13:33:44Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149374
.
Reference: [1] Bandlow I.: A characterization of Corson-compact spaces.Comment. Math. Univ. Carolin. 32 (1991), no. 3, 545–550. MR 1159800
Reference: [2] Casarrubias-Segura F., García-Ferreira S., Rojas-Hernández R.: Characterizing Corson and Valdivia compact spaces.J. Math. Anal. Appl. 451 (2017), no. 2, 1154–1164. MR 3624784, 10.1016/j.jmaa.2017.02.065
Reference: [3] Cascales B., Orihuela J.: A biased view of topology as a tool in functional analysis.Recent Progress in General Topology III, Atlantis Press, Paris, 2014, pages 93–164. MR 3205483
Reference: [4] Clontz S., Gruenhage G.: Proximal compact spaces are Corson compact.Topology Appl. 173 (2014), 1–8. MR 3227201, 10.1016/j.topol.2014.05.010
Reference: [5] Collins P. J., Reed G. M., Roscoe A. W., Rudin M. E.: A lattice of conditions on topological spaces.Proc. Amer. Math. Soc. 94 (1985), no. 3, 487–496. MR 0787900, 10.1090/S0002-9939-1985-0787900-X
Reference: [6] Collins P. J., Roscoe A. W.: Criteria for metrizability.Proc. Amer. Math. Soc. 90 (1984), 631–640. MR 0733418, 10.1090/S0002-9939-1984-0733418-9
Reference: [7] Dimov G.: Eberlein spaces and related spaces.C. R. Acad. Sci. Paris, Sér. I Math. 304 (1987), no. 9, 233–235. MR 0883481
Reference: [8] Dimov G. D.: An internal topological characterization of the subspaces of Eberlein compacta and related compacta - I.Topology Appl. 169 (2014), 71–86. MR 3199860
Reference: [9] Feng Z., Gartside P.: Point networks for special subspaces of $ (\mathbb{R}^{\kappa})$.Fund. Math. 235 (2016), no. 3, 227–255. MR 3570211, 10.4064/fm185-3-2016
Reference: [10] García F., Oncina L., Orihuela J.: Network characterization of Gul'ko compact spaces and their relatives.J. Math. Anal. Appl. 297 (2004), no. 2, 791–811. MR 2088694, 10.1016/j.jmaa.2004.05.013
Reference: [11] Gruenhage G.: Covering properties on $X^2 \setminus \Delta$, $W$-sets, and compact subsets of $ \Sigma$-products.Topology Appl. 17 (1984), no. 3, 287–304. MR 0752278, 10.1016/0166-8641(84)90049-X
Reference: [12] Gruenhage G.: Monotonically monolithic spaces, Corson compacts, and $D$-spaces.Topology Appl. 159 (2012), no. 6, 1559–1564. MR 2891421, 10.1016/j.topol.2011.01.027
Reference: [13] Guo H., Feng Z.: Predictable network, monotonic monolithicity and $D$-spaces.Topology Appl. 254 (2019), 107–116. MR 3896174
Reference: [14] Kombarov A. P.: Functionally open and rectangular coverings of $X^2\setminus \Delta$ and some topological characteristics of Corson and Eberlein compact spaces.Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1988), no. 3, 52–54 (Russian); translation in Moscow Univ. Math. Bull. 43 (1988), no. 3, 45–47. MR 0966868
Reference: [15] Michael E., Rudin M. E.: A note on Eberlein compacts.Pacific J. Math. 72 (1977), no. 2, 487–495. MR 0478092, 10.2140/pjm.1977.72.487
Reference: [16] Nyikos P. J.: On the product of metacompact spaces. I. Connections with hereditary compactness.Amer. J. Math. 100 (1978), no. 4, 829–835. MR 0509075, 10.2307/2373911
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-4_11.pdf 214.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo