Previous |  Up |  Next

Article

Title: On hereditary normality of $\omega ^*$, Kunen points and character $\omega_{1}$ (English)
Author: Logunov, Sergei
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 4
Year: 2021
Pages: 507-511
Summary lang: English
.
Category: math
.
Summary: We show that $\omega ^{*}\setminus \{p\}$ is not normal, if $p$ is a limit point of some countable subset of $\omega ^{*}$, consisting of points of character $\omega _{1}$. Moreover, such a point $p$ is a Kunen point and a super Kunen point. (English)
Keyword: non-normality point
Keyword: butterfly point
Keyword: Kunen point
Keyword: super Kunen point
MSC: 54D15
MSC: 54D35
MSC: 54D40
MSC: 54D80
MSC: 54E35
MSC: 54G20
idZBL: Zbl 07511577
idMR: MR4405820
DOI: 10.14712/1213-7243.2021.032
.
Date available: 2022-02-21T13:32:15Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149373
.
Reference: [1] Bešlagić A., van Douwen E. K.: Spaces of nonuniform ultrafilters in spaces of uniform ultrafilters.Topology Appl. 35 (1990), no. 2–3, 253–260. MR 1058805, 10.1016/0166-8641(90)90110-N
Reference: [2] Błaszczyk A., Szymański A.: Some non-normal subspaces of the Čech–Stone compactification of a discrete space.Proc. Eighth Winter School on Abstract Analysis, Czechoslovak Academy of Sciences, Praha, 1980, pages 35–38.
Reference: [3] Comfort W. W., Negrepontis S.: Homeomorphs of three subspaces of $ \beta N\setminus N$.Math. Z. 107 (1968), 53–58. MR 0234422, 10.1007/BF01111048
Reference: [4] Fine N. J., Gillman L.: Extensions of continuous functions in $\beta N$.Bull. Amer. Math. Soc. 66 (1960), 376–381. MR 0123291, 10.1090/S0002-9904-1960-10460-0
Reference: [5] Gryzlov A. A.: On the question of hereditary normality of the space $\beta \omega \setminus \omega$.Topology and Set Theory, Udmurt. Gos. Univ., Izhevsk, 1982, 61–64 (Russian). MR 0760274
Reference: [6] Rajagopalan M.: $\beta N-N-\{p\}$ is not normal.J. Indian Math. Soc. (N.S.) 36 (1972), 173–176. MR 0321012
Reference: [7] Szymanski A.: Retracts and non-normality points.Topology Proc. 40 (2012), 195–201. MR 2832067
Reference: [8] Warren N. M.: Properties of Stone–Čech compactifications of discrete spaces.Proc. Amer. Math. Soc. 33 (1972), 599–606. MR 0292035
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-4_10.pdf 173.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo