Title:
|
On hereditary normality of $\omega ^*$, Kunen points and character $\omega_{1}$ (English) |
Author:
|
Logunov, Sergei |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
62 |
Issue:
|
4 |
Year:
|
2021 |
Pages:
|
507-511 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that $\omega ^{*}\setminus \{p\}$ is not normal, if $p$ is a limit point of some countable subset of $\omega ^{*}$, consisting of points of character $\omega _{1}$. Moreover, such a point $p$ is a Kunen point and a super Kunen point. (English) |
Keyword:
|
non-normality point |
Keyword:
|
butterfly point |
Keyword:
|
Kunen point |
Keyword:
|
super Kunen point |
MSC:
|
54D15 |
MSC:
|
54D35 |
MSC:
|
54D40 |
MSC:
|
54D80 |
MSC:
|
54E35 |
MSC:
|
54G20 |
idZBL:
|
Zbl 07511577 |
idMR:
|
MR4405820 |
DOI:
|
10.14712/1213-7243.2021.032 |
. |
Date available:
|
2022-02-21T13:32:15Z |
Last updated:
|
2024-01-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149373 |
. |
Reference:
|
[1] Bešlagić A., van Douwen E. K.: Spaces of nonuniform ultrafilters in spaces of uniform ultrafilters.Topology Appl. 35 (1990), no. 2–3, 253–260. MR 1058805, 10.1016/0166-8641(90)90110-N |
Reference:
|
[2] Błaszczyk A., Szymański A.: Some non-normal subspaces of the Čech–Stone compactification of a discrete space.Proc. Eighth Winter School on Abstract Analysis, Czechoslovak Academy of Sciences, Praha, 1980, pages 35–38. |
Reference:
|
[3] Comfort W. W., Negrepontis S.: Homeomorphs of three subspaces of $ \beta N\setminus N$.Math. Z. 107 (1968), 53–58. MR 0234422, 10.1007/BF01111048 |
Reference:
|
[4] Fine N. J., Gillman L.: Extensions of continuous functions in $\beta N$.Bull. Amer. Math. Soc. 66 (1960), 376–381. MR 0123291, 10.1090/S0002-9904-1960-10460-0 |
Reference:
|
[5] Gryzlov A. A.: On the question of hereditary normality of the space $\beta \omega \setminus \omega$.Topology and Set Theory, Udmurt. Gos. Univ., Izhevsk, 1982, 61–64 (Russian). MR 0760274 |
Reference:
|
[6] Rajagopalan M.: $\beta N-N-\{p\}$ is not normal.J. Indian Math. Soc. (N.S.) 36 (1972), 173–176. MR 0321012 |
Reference:
|
[7] Szymanski A.: Retracts and non-normality points.Topology Proc. 40 (2012), 195–201. MR 2832067 |
Reference:
|
[8] Warren N. M.: Properties of Stone–Čech compactifications of discrete spaces.Proc. Amer. Math. Soc. 33 (1972), 599–606. MR 0292035 |
. |