Previous |  Up |  Next

Article

Title: Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice (English)
Author: Bak, Sergiy
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 58
Issue: 1
Year: 2022
Pages: 1-13
Summary lang: English
.
Category: math
.
Summary: In this paper we obtain results on existence of non-constant periodic traveling waves with arbitrary speed $c>0$ in infinite system of linearly coupled nonlinear oscillators on a two-dimensional lattice. Sufficient conditions for the existence of such solutions are obtained with the aid of critical point method and linking theorem. (English)
Keyword: nonlinear oscillators
Keyword: 2D-lattice
Keyword: traveling waves
Keyword: critical points
Keyword: linking theorem
MSC: 34C15
MSC: 37K58
MSC: 37K60
MSC: 74J30
idZBL: Zbl 07511504
idMR: MR4412963
DOI: 10.5817/AM2022-1-1
.
Date available: 2022-02-23T12:07:04Z
Last updated: 2022-06-23
Stable URL: http://hdl.handle.net/10338.dmlcz/149442
.
Reference: [1] Aubry, S.: Breathers in nonlinear lattices: existence, linear stability and quantization.Physica D 103 (1997), 201–250. 10.1016/S0167-2789(96)00261-8
Reference: [2] Bak, S.: The existence of heteroclinic traveling waves in the discrete sine-Gordon equation with nonlinear interaction on a 2D-lattice.Zh. Mat. Fiz. Anal. Geom. 14 (1) (2018), 16–26. MR 3783757, 10.15407/mag14.01.016
Reference: [3] Bak, S.M.: Travelling waves in chains of oscillators.Mat. Stud. 26 (2) (2006), 140–153. MR 2314304
Reference: [4] Bak, S.M.: Periodic travelling waves in chains of oscillators.Commun. Math. Anal. 3 (1) (2007), 19–26. MR 2347772
Reference: [5] Bak, S.M.: Existence of periodic traveling waves in systems of nonlinear oscillators on 2D-lattice.Mat. Stud. 35 (1) (2011), 60–65, (in Ukrainian). MR 2816218
Reference: [6] Bak, S.M.: Periodic travelling waves in the discrete sine–Gordon equation on 2D-lattice.Math. Comput. Model. Phys. Math. Sci. 9 (2013), 5–10, (in Ukrainian).
Reference: [7] Bak, S.M.: Existence of heteroclinic traveling waves in a system of oscillators on a two-dimensional lattice.J. Math. Sci. 217 (2) (2016), 187–197. MR 3532455, 10.1007/s10958-016-2966-z
Reference: [8] Bak, S.M.: Existence of solitary traveling waves for a system of nonlinearly coupled oscillators on the 2d-lattice.Ukr. Math. J. 69 (4) (2017), 509–520. MR 3655283, 10.1007/s11253-017-1378-7
Reference: [9] Bak, S.M.: Homoclinic travelling waves in discrete sine-Gordon equation with nonlinear interaction on 2D lattice.Mat. Stud. 52 (2) (2019), 176–184. MR 4056523
Reference: [10] Bak, S.N., Pankov, A.A.: Travelling waves in systems of oscillators on 2D-lattices.J. Math. Sci. 174 (4) (2011), 916–920. MR 2768150
Reference: [11] Bell, J.: Some threshold results for models of myelinated nerves.Math. Biosci. 54 (1981), 181–190. 10.1016/0025-5564(81)90085-7
Reference: [12] Braun, O.M., Kivshar, Y.S.: Nonlinear dynamics of the Frenkel-Kontorova model.Phys. Rep. 306 (1998), 1–108. 10.1016/S0370-1573(98)00029-5
Reference: [13] Braun, O.M., Kivshar, Y.S.: The Frenkel-Kontorova Model. Concepts, Methods and Applications.Berlin: Springer, 2004. MR 2035039
Reference: [14] Cahn, J.W.: Theory of crystal growth and interface motion in crystalline materials.Acta Metall. 8 (1960), 554–562. 10.1016/0001-6160(60)90110-3
Reference: [15] Cahn, J.W., Mallet-Paret, J., van Vleck, E.S.: Travelling wave solutions for systems of ODEs on a two-dimensional spatial lattice.SIAM J. Appl. Math. 59 (2) (1998), 455–493. 10.1137/S0036139996312703
Reference: [16] Chow, S.N., Mallet-Paret, J., Shen, W.: Travelling waves in lattice dynamical systems.J. Differential Equations 149 (1998), 248–291. 10.1006/jdeq.1998.3478
Reference: [17] Chua, L.O., Roska, T.: The CNN paradigm.IEEE Trans. Circuits Syst. 40 (1993), 147–156. 10.1109/81.222795
Reference: [18] Eilbeck, J.C., Flesch, R.: Calculation of families of solitary waves on discrete lattices.Phys. Lett. A 149 (1990), 200–202. 10.1016/0375-9601(90)90326-J
Reference: [19] Fečkan, M., Rothos, V.: Travelling waves in Hamiltonian systems on 2D lattices with nearest neighbour interactions.Nonlinearity 20 (2007), 319–341. MR 2290465, 10.1088/0951-7715/20/2/005
Reference: [20] Flach, S., Willis, C.R.: Discrete breathers.Phys. Rep. 295 (1998), 181–264. 10.1016/S0370-1573(97)00068-9
Reference: [21] Friesecke, G., Matthies, K.: Geometric solitary waves in a 2D math-spring lattice.Discrete Contin. Dyn. Syst. 3 (1) (2003), 105–114. MR 1951571
Reference: [22] Hupkes, H.J., Morelli, L., Stehlí, P., Švígler, V.: Multichromatic travelling waves for lattice Nagumo equations.Appl. Math. Comput. 361 (15) (2019), 430–452. MR 3961829
Reference: [23] Iooss, G., Kirschgässner, K.: Travelling waves in a chain of coupled nonlinear oscillators.Commun. Math. Phys. 211 (2000), 439–464. 10.1007/s002200050821
Reference: [24] Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells.SIAM J. Appl. Math. 47 (3) (1987), 556–572. 10.1137/0147038
Reference: [25] Kreiner, C.-F., Zimmer, J.: Heteroclinic travelling waves for the lattice sine-Gordon equation with linear pair interaction.Discrete Contin. Dyn. Syst. 25 (3) (2009), 1–17. MR 2533982
Reference: [26] Kreiner, C.-F., Zimmer, J.: Travelling wave solutions for the discrete sine-Gordon equation with nonlinear pair interaction.Nonlinear Anal. 70 (9) (2009), 3146–3158. MR 2503060, 10.1016/j.na.2008.04.018
Reference: [27] Laplante, J.P., Erneux, T.: Propagation failure in arrays of coupled bistable chemical reactors.J. Phys. Chem. 96 (1992), 4931–4934. 10.1021/j100191a038
Reference: [28] Makita, P.D.: Periodic and homoclinic travelling waves in infinite lattices.Nonlinear Anal. 74 (2011), 2071–2086. MR 2781738, 10.1016/j.na.2010.11.011
Reference: [29] Pankov, A.: Traveling waves and periodic oscillations in Fermi-Pasta-Ulam lattices.London: Imperial College Press, 2005. MR 2156331
Reference: [30] Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations.CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, 1986. Zbl 0609.58002
Reference: [31] Wattis, J.A.D.: Approximations to solitary waves on lattices, II: Quasicontinuum methods for fast and slow waves.J. Phys. A 26 (1993), 1193–1209. 10.1088/0305-4470/26/5/036
Reference: [32] Wattis, J.A.D.: Solitary waves on a two-dimensional lattice.Phys. Scripta 50 (3) (1994), 238–242. 10.1088/0031-8949/50/3/003
Reference: [33] Wattis, J.A.D.: Approximations to solitary waves on lattices, III: The monatomic lattice with second-neighbour interactions.J. Phys. A 29 (1996), 8139–8157. 10.1088/0305-4470/29/24/035
Reference: [34] Willem, M.: Minimax theorems.Boston, Birkhäuser, 1996. Zbl 0856.49001
Reference: [35] Zhang, L., Guo, S.: Existence and multiplicity of wave trains in 2D lattices.J. Differential Equations 257 (2014), 759–783. MR 3208090, 10.1016/j.jde.2014.04.016
.

Files

Files Size Format View
ArchMathRetro_058-2022-1_1.pdf 453.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo